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ON

VORTEX SIMULATION OF TURBULENT COMBUSTION

(AFOSR Grant No. 89-0491)

Principal Investigator: Ahmed F. Ghoniem

Department of Mechanical Engineering
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SUMMARY

During the course of this work, we focused on the extension of the vortex method and the

transport element method to three-dimensional flows and to reacting flow with finite heat release,

density variation and volumetric expansion. Problems explored in detail include the formation of

streamwise vorticity in uniform-density and variable density flow, the effect of this vorticity on

the rate of product formation and the effect of volumetric expansion due to heat release on shear

layer growth rate.
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TECHNICAL REPORT

The transport element method has been extended to three dimensions to study the

evolution of scalar fields in a flow with high vorticity concentration. The numerical scheme is

based on following Lagrangian computational elements employed in the transport of vorticity

and local scalar gradients, and is a direct generalization of the three-dimensional vortex element

method. The numerical algorithms required to implement this scheme have been developed.

Problems associated with severe distortion of the flow map due to the growth of perturbations

were shown to cause difficulties including loss of numerical accuracy and resolution. Means to

overcome these problems were developed and were shown to yield accurate solutions. Two grid-

based and two grid-free methods for the computation of vorticity stretching were implemented,

and the accuracy of the methods was investigated in light of numerical results. Solutions reveal

the need for a careful treatment of the discrete form of the vorticity transport equation. The

methods were applied to study the evolution of an initially two-dimensional shear layer,

perturbed in the streamwise and spanwise direction, with attention focused on the role of the

spanwise instability and how it enhances the rate of scalar entrainment into the large-scale

structures which form as the streamwise instability develops. Two mechanisms, associated with

the onset of three-dimensional instability, are found to be responsible for this enhancement:

vorticity intensification within the large eddy core due to spanwise stretching which delays its

collapse; and generation of transverse entrainment currents towards the eddy core due to the

formation of streamwise vortex structures within the core and along the braids between

neighboring cores. Preferential entrainment is detected along the spanwise direction due to the

streamwise vorticity. Details of this work are presented in the paper on, "Three-dimensional

Vortex Simulation of Rollup and Entrainment in a Shear Layer," by Omar M. Knio and Ahmed

F. Ghoniem.(1 )

Numerical simulations of a three-dimensional temporally-growing shear layer were then

obtained at high Reynolds number for a variable density flow using the transport element

method. Attention was focused on the effect of initial vorticity and density distributions on the

interaction between the instability modes which lead to the generation and intensification of

streamwise vorticity. Results showed that the three-dimensional instabilities evolve following

the formation of concentrated spanwise vorticity cores. The deformation of each core along its

span resembles the amplification of the translative instability. The generation of vortex rods

which wrap around individual cores while stretching between neighboring cores, suggested a

mode similar to the Corcos instability. The instability modes leading to the formation of both

(1) Journal of Computational Physics, Vol 97, No. 1, November 1991.
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structures, energized by the extensional strain generated by the cores, grow simultaneously. A

similar series of events occurred in variable-density shear layers and in shear !ayers which start

with an asymmetric vorticity distribution. Baroclinic vorticity generation in the variable-density

layer lead to the formation of asymmetric cores whose volumetric composition is biased towards

the lighter fluid. The structures are propelled, by their asymmetric vorticity distribution, in the

direction of the heavier stream while their eccentric spinning forces an uneven stretching of the

vortex rods. The origin of the asymmetry was established by comparing the results of variable

density shear layers with the results of a shear layer with an initially asymmetric vorticity

distribution in a uniform-density flow. The strong late-stage asymmetry exhibited by the former
is not observed in the latter. Thus, baroclinic vorticity generation is responsible for the observed

asymmetry. We also find that initially asymmetric vorticity distribution does not, as suggested

before, lead to asymmetric spacing between the streamwise rods. It is concluded that the

experimentally observed asymmetric spacing must arise after pairing. Details of this study are

presented in this report as Appendix 1.(2)

The three-dimensional transport element method was then extended to solve the

conservation equations for reacting flow. The numerical scheme maintained its adaptive,

Lagrangian nature in which computational effort is concentrated in zones of finite vorticity and

chemical reaction. The method utilized an accurate discretization of vorticity and species

concentrations among a number of spherically-symmetric reacting transport element and the

advection of these elements along particle trajectories. We used the low Mach number

approximation of combustion in open domains and restricted our attention to the case of

diffusion flames with no heat release. A single-step, second-order, infinite-rate kinetics chemical

reaction model was employed. The scheme was applied to study the effect of flow-induced

instabilities on the reaction zone and product distribution in a temporal shear layer. Results were

obtained in the high Peclet number regime for a wide iange of Damkohler numbers. Changes in

the reaction field were related to either the entrainment or the strain field associated with the

saturation of the instabilities. With increasing Damkohler number, the structure of the reaction

region changed from a distributed zone embedded within spanwise and streamwise vortices to a

thin sheet surrounding their cores. However, the product concentration exhibited strong

similarity to the vorticity, falling rapidly in regions where the vorticitv magnitude was small.

Variation of the Peclet number yields minor changes in the product L.,a-ibution and in the

reaction zone structure but strongly affects product formation rates. Details of this study are

printed in this report as Appendix ]1.(3)

(2) The paper has been accepted for publication in the Journal of Fluid Mechanics.

(3) The paper has appeared in the AIAA Journal, Vol 30, pp. 105-116, January 1992.
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Finally, the transport element method has been extended to simulate a spatially

developing, reacting shear layer with unmixed reactants and finite heat release. In the case of a

reacting flow, vorticity changes due to density variation, scalar gradients change due to the

chemical reaction, and volumetric expansion adds an expansion field. Solutions were obtained

for a forced shear layer at different Damkohler numbers and enthalpy of reaction to study the

effect of combustion heat release rate on the development of the large scale structures. Forcing

was used to ensure roll-up within the computational domain. We showed that heat release

enlarges the size of the fundamental eddies, stretching their streamwise dimension and slightly

reducing their cross stream dimension, while their overall size remains almost the same. Along

with forcing at the fundamental and subharmonic frequencies, heat release increases/decreases

the size of the in-phase/out-of-phase eddies. The non-uniform acceleration of the eddies in the

streamwise direction causes their relative locations to deviate from that of a uniform-density

layer and thus modifies the pairing process into a tearing/gulping process. Results also show that

the enthalpy of reaction is more important than the reaction frequency factor in affecting the flow

dynamics. For the same parameters, the variable-density layer grows slower than its uniform-

density counterpart. Details of this work are presented in Appendix Ill in this report.(4 )

(4) Presented at the 30th Aerospaace Sciences Meeting and Exhibit, Jan 6-9, 1992, Reno, NV, AIAA-92-001.
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THE THREE-DIMENSIONAL STRUCTURE OF PERIODIC VORTICITY LAYERS
UNDER NON-SYMMETRIC CONDITIONS

Omar M. Kniot and Ahmed F. Ghoniem
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

Numerical simulations of a three-dimensional temporally-growing shear layer are obtained
at high Reynolds number and zero Froude number using a vortex scheme modified for a variable
density flow. Attention is focused on the effect of initial vorticity and density distributions on the
inteaction between instability modes which lead to the generation and intensification of streamwise
vorticity. Results show that the three-dimensional instabilities evolve following the formation of
concentrated spanwise vorticity cores. The deformation of each core along its span resembles the
amplification of the translative instability. The generation of vortex rods, which wrap around
individual cores while stretching between neighboring cores, suggest a mode similar to the Corcos
instability. The instability modes leading to the formation of both structures, energized by the
extensional strain generated by the cores, grow simultaneously. A similar series of events occurs
in variable-density shear layers and in shear layers which start with an asymmetric vorticity
distribution. Baroclinic vorticity generation in the variable-density layer leads to the formation of
asymmetric cores whose volumetric composition is biased towards the lighter fluid. The structures
are propelled, by their asymmetric vorticity distribution, in the direction of the heavier stream while
their eccentric spinning forces an uneven stretching of the vortex rods. The origin of the
asymmetry is established by comparing these with the results of a shear layer with an initially
asymmetric vorticity distribution in a uniform-density flow. The strong late-stage asymmetry
exhibited by the former is not observed in the latter. Thus, baroclinic vorticity generation is
responsible for the observed asymmetry. We also find that initially asymmetric vorticity
distribution does not, as suggested before, lead to asymmetric spacing between the streamwise
rods. It is concluded that the ex tally observed asymmetic spacing must arise after pairing.

t Present Address: Department of Mechanical Engineering, The Johns Hopkins University,
Baltimore, MD 21218



1. INTRODUCTION

The formation of large vortical structures has long been observed in free shear layers at
high Reynolds numbers (Crow & Champagne, 1970; Brown & Roshko, 1974). Analysis of

experimental results shows that the evolution of these structures and their mutual interactions,

governed essentially by inviscid flow dynamics, play an important role in the growth of the layer,

the distribution of turbulent statistics, scalar transport and mixing (Winant & Browand (1974); Ho

& Huerre, 1984; Dimotakis, 1989; Hussain, 1986). Without external forcing, the early stages of
the layer are dominated by 2D motion, where spanwise vortex structures are formed, followed by a

transition to 3D motion. Within and after the transition region, the spanwise vortices are

deformed, and secondary streamnwise vortices are generated (Konrad, 1976; Breidenthal, 1981;
Jimenez, 1983; Bernal, 1981). Experimental investigations yielded striking visualizations of the

sueamwise structures, and how they modify scalar transport (Jimenez, Cogollos & Bernal, 1985;

Bernal & Roshko, 1986). In recent work, Lasheras, Cho & Maxworthy (1986) and Lasheras &

Choi (1988) examined the possibility of manipulating the location of the "transition" region by 3D
forcing (see also Breidenthal, 1980), thereby emphasizing the practical aspect of such studies.

The 3D response of vorticity layers is complex and determining the origin and shape of the

secondary structures poses considerable difficulties to analytical studies. So far, a limited number

of theoretical investigations have dealt with this problem. Pierihumbert and Widnall (1982) used

a periodic array of Stuart vortices to represent the spanwise eddies formed by the roll-up of the
Kelvin-Helmholtz instability. The linear stability analysis of this configuration revealed the

presence of a "translative" instability, which was then proposed as a possible mechanism leading to

the formation of the observed secondary vortices in shear layers. Another mechanism, discovered
by Corcos & Lin (1984) in their study of the stability of the layer by linearizing 3D perturbations

around the evolving 2D flow (Lin & Corcos, 1984), was also suggested. They showed that, for

sufficiently low diffusion (Neu, 1984), the strained streamwise vorticity is unstable, and the

instability causes the redistribution of the latter into round, concentrated vortex rods. These
streamwise rods lead to the generation of "mushroom" structures similar to those experimentally

observed (Bernal & Roshko, 1986; Lasheras, Cho & Maxworthy, 1986; Lasheras & Choi, 1988).

Manifestation of both instability mechanisms has been reported in experimental studies, however,

the broad-band nature of the 3D modes predicted in both theories complicates the task of verifying
their validity or determining flow conditions under which one mode dominates the other.

The 3D motion of shear layers has also been the subject of numerical investigations.
Ashurst & Meiburg (1988) used a vortex filament scheme to compute the development of a

temporal shear layer at high Reynolds number. The shear layer was modeled by a single
desingularized vortex sheet or two vortex sheets of opposite sign. Results of both models showed

2



evidence of both the translative and the Corcos instability modes. When two sheets of opposite

signs were used, an asymmetric distribution of streamwise vortices (Lasheras & Choi, 1988), was

apparently reached through a non-linear interaction between two counter-rotating streamwise

vortex rods, each originating in a distinct vorticity layer. While a similar asymmetric distribution

of vortices was observed experimentally in shear layers, the initial vorticity profile used in this

simulation was more representative of that of a wake. The difference between the stability and

long-time behavior of wakes and shear layers could be seen by comparing the results of Ashurst &

Meiburg and of Grinstein et al. (1989), who used a finite-difference scheme to simulate the

evolution of a spatially-developing shear layer at moderate Reynolds number. Results of the latter

indicate that the asymmetric distribution of streamwise vortices develops as a result of the merging

of pairs of streamwise rods of the same sign of circulation, and that this interaction only occurs

after pairing between neighboring spanwise eddies.

The "sequential" nature of the growth of several forms of 2D and 3D instabilities was

investigated in the spectral calculations of Metcalfe et al. (1987). They considered temporal

vorticity layers at low Reynolds number, and performed a detailed study of the energy content of

the distinct modes. Their results show that, for small perturbations, 2D Kelvin-Helmholtz waves
grow first. During their growth, 3D activity is suppressed and the layer maintains a 2D character.

Following the non-linear growth of the Kelvin-Helmholtz waves and the formation of ("primary")

spanwise eddies, 3D perturbations are amplified. Saturation of the Kelvin-Helmholtz and 3D

instabilities is reached soon after the flattening of the (primary) spanwise cores and the

"maturation" of 3D modes. They also show that pairing of spanwise cores, during which 3D

activity is suppressed, is necessary for further growth of the layer. Following pairing, the growth
of 3D modes is resumed. Amplification of 3D disturbances is thus restricted to windows

separating periods of otherwise 2D growth.
The dependence of the response of the shear layer on initial conditions and forcing levels

was investigated by Inoue (1989), who performed a vortex filament simulation of a spatially-

developing layer modeled by a single vortex sheet. His results show that the 3D transition strongly

depends on 3D forcing, and that the flowfield tends towards 2D behavior once this forcing is

interrupted. This was contradicted by the numerical experiments of Grinstein et al. (1989) which
indicate that the transition to 3D motion persists despite the absence of a continuous forcing

function. This result was verified in the simulations of Lowery et al. (1987), who employed a
hybrid finite difference - spectral method to track the evolution of a passive scalar in a developing

layer at low Reynolds number. While the study focused on asymmetric entrainment patterns in 2D

and 3D (Dimotakis 1989, 1986), it also emphasized the fact that distributions of spanwise and
streamwise vorticity are weakly dependent on the strength and shape of the forcing function. As

indicated below, vortex simulations, similar to those of Inoue (1989) and Ashurst & Meiburg
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(1988), which do not allow the number of computational elements to increase as the material

elements are stretched, may lose accuracy and contaminate the computations with numerical

diffusion errors.

Despite these efforts, a clear and unified interpretation of the role of the various modes in

the formation of vortical and scalar structures, a crucial step towards a better understanding of 3D

transition, has not been reached. Moreover, several important issues, summarized next, cast some

doubt on the conclusions of these simulations. Using desingularized vortex sheets to model shear

layers, as in Ashurst & Meiburg (1989), may lead to spurious results since, as shown by the
detailed numerical study of Knio & Ghoniem (1991), the properties of the 3D modes of a vortex

structure are strongly dependent on the vorticity distribution within the cross section of the

structure. The use of vortex filaments to resolve vorticity within the shear layer is not
recommended since the corresponding schemes, although accurate for short times, do not maintain

their accuracy as vortex elements tend to move apart due to stretching in the direction normal to that

of the main flow. This violates an important accuracy condition in vortex methods, namely that the

cores of neighboring vortex elements must, at all times, overlap.

Another source of inaccuracy in the simulations presented in Ashurst & Meiburg (1988) is

the enforcement of the periodic boundary conditions. A small number of images was used on

either side of the computational domain, which was not enough to capture the correct value of the
free stream velocity. On the other hand, the conclusions of the spectral simulations of Metcalfe et

al (1987), particularly those concerning the onset of and the interaction between the 2D and 3D
modes described above, may be dependent on some diffusive-convective balance achieved only at

low Reynolds number. This balance, which is a function of the Reynolds number, can lead to an

early saturation of the instability. We believe that a high Reynolds number simulation is necessary

to determine whether the interaction between the different modes of the 3D instability is, as widely

suspected, an essentially inviscid mechanism.

The large number of mechanisms governing the evolution of shear layers, and the

complexity of the resulting vortical and scalar structures underscore the need for accurate numerical

methods which can carefully treat the the vorticity transport equation. Successful implementation

of numerical schemes depends on the proper account of the vorticity stretching term, and, if
present, vorticity source terms. Another crucial ingredient lies in the ability of the method to

accommodate the large strain associated with high concentraions of vorticity. The latter have been

shown to result in the deterioration of the discretization accuracy in both Eulerian computations,
through the creation of small scale structures which may not be well represented on a grid of fixed

mesh size and the accumulation of numerical diffusion which may dissipate these structures at their
early stages, and Lagrangian computations where zones of high strain may be depleted of

computational elements. Finally, questions regarding the dynamic effect of density gradients, in
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the absence of gravity, which impact mixing of gases at different molecular weight and/or density,

have not been tackled before.

In this work, an adaptive, Lagrangian numerical scheme is used in the simulation of

vorticity layers. Two main ingredients are incorporated in the constuuction of the scheme, which

was analyzed in our previous effort (Knio & Ghoniem, 1991). The first relates to its adaptive

nature, a feature which avoids the loss of spatial resolution and allows the accommodation of high

strain rates by increasing the number of computational elements as the flow evolves. The second,

a property found in most Lagrangian methods, consists of ensuring a minimal effect of numerical

diffusion which may lead to excessive smearing of the vorticity. We also apply a vortex scheme

extended to variable-density flows to analyze the dynamic effect of finite density gradients on the

evolution of the shear layer.

Computed results are used to accurately portray the severe deformation of the flow map and

the evolution of the flow vorticity. We focus on the relationship between the deformation of

material surfaces, the generation and intensification of vorticity and the associated scalar

entrainment patterns. The results are used to characterize the 3D instabilities of the vorticity layer.

Instability modes leading to the generation of streamwise vortex rods joining neighboring eddies

are identified and distinguished from those affecting the vortex cores. A generalized perspective of

the latter is given; the similarity between vorticity patterns found in the late stages of spanwise

vortex cores in the shear layer and those observed in the development of vortex rings is discussed.

Finally, we investigate some of the mechanisms leading to the onset of asymmetry in an otherwise

symmetric flow. In particular, a variable-density layer is contrasted with a uniform-density

asymmetric layer, in order to study the roles of density variation and asymmetric strain field on the

development of the vorticity field.

The numerical scheme used in the computations is summarized in Section 2. In Section 3,

we review the evolution of a uniform-density symmetric layer, then present results of variable-

density and asymmetric vorticity layer computations. The results are further discussed in Section

4; concluding remarks are given in Section 5.

2. FORMULATION AND NUMERICAL SCHEME

2.1. FORMULATION AND GOVERNING EQUATIONS

We start with the incompressible, isentropic, variable-density form of the governing

equations in the low Mach number limit (Rehm & Baum, 1978; Majda & Sethian 1987, Ghoniem

& Krishnan, 1989). By choosing an appropriate combination of characteristic length, time and
velocity scales as normalizing parametems, these equations are written as:
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PA =-- Vp S (2)

where x = (x,y,z) is the position vector, u = (u,vw) is the velocity, t is time, V = (d/dx,d/dy,d/d)

is the gradient operator,and DIDt = M + uaVu is the material derivative. Since the pressure and

density variations are decoupledwe can supplement Eqs. (1) and (2) with:

V.u=O (3)

By taking the curl of Eq. (2) and using the solenoidality condition, Eq. (3), we get the

vorticity transport equation:

Da = aVu + LP ×xVp
DP 

(4)

where w, = Vx a is vorticity. A more suitable form of the vorticity transport equation is derived
by substituting Eq.(2) for Vp into Eq. (4) thus yielding:

Do= ou-Vu-x-P D)I
Dt p Dr (5)

The vorticity associated with a material particle changes due to tilting and stretching under the
action of the strain, Vu, and due to the particle acceleration in a non-uniform density field.

Equation (5) is preferred over Eq. (4) because the baroclinic source term is written in terms of the
kinematics of the flowfield rather than being treated as a dynamic effect associated with pressure
forces. Buoyancy effects have been neglected in the vorticity transport equation since we intend to
focus on high-speed flows in which fluid acceleration is much larger than gravitational
acceleration. Under these conditions, gravity effects are negligible whenever the Richardson
number,

po U 2  (6)
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written in terms of the gravity constant, g, and characteristic density, Po, length, Al, density

difference, Ap, and velocity difference, U, is small (Koop & Browand, 1979).

The presence of the baroclinic source term requires the accurate estimation of the density

gradient. To this end, we derive a transport equation for the scalar gradient (the density in this
case), by taking the gradient of Eq. (1) to obtain:

Dýg - g.Vu - g X a)Dt= (7)

where g = Vp. Thus, while density remains constant along a material path, its gradient is affected

by the local strain and the vorticity. Working with Eq. (7) instead of Eq. (1) is of similar nature as

using the vorticity transport equation in place of the momentum equation. Both substitutions are

motivated by the observation that, in most high Reynolds number flows, the supports of the

vorticity and scalar gradient are small subsets of the supports of the primitive variables. Thus,

computational effort is concentrated into smaller regions of the domain of study, and the numerical

differentiation of the density field is avoided, thereby minimizing a loss of resolution.

2.2. NUMERICAL SCHEME

The transport element method is used to compute the evolution of the shear layer. The

numerical scheme solves the time-dependent, inviscid, incompressible, vorticity, scalar and scalar

gradient transport equations given above. Variants of the numerical scheme which accommodate

gravity, compressibility, chemical reactions and diffusion have been extensively used in 2D

(Ghoniem & Krishnan, 1988), and in a limited number of applications in three-dimensions (Knio

& Ghoniem, 1992), but will not be required in this study.

The numerical method is the product of the combination of a series of refinements of 3D
vortex methods with the scalar transport techniques developed in the 2D transport element method

(Ghoniem et al., 1988). It is based on the discretization of the vorticity and scalar gradient fields

into a finite number of Lagrangian elements, called transport elements. Transport elements carry

discrete scalar, vorticity and scalar grdient values, and are distributed along elementary rectangular

areas which are used to divide entire material surfaces. The Lagrangian mesh defines the location
of the elements, while vector quantities are not restricted to lie within elementary rectangular areas.
Discrete quantities are smoothed in a small spherical neighborhood of the center of the element. A
third order Gaussian core function, W,6 = 31(4w&f) exp(-r3I/W), is used as smoothing function, and
its standard deviation 8 is used as characteristic core radius (Knio & Ghoniem, 1991). This yields

a continuous version of the vorticity field which induces a desingularized velocity field, expressed

in terms of the Biot-Savart law (Batchelor, 1967). The material surfaces are tracked by moving the
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vertices of the elements with the local velocity vector, using a second-order, predictor-corrector

time integration scheme.

The construction of the transport element method closely mimics conventional vortex

element schemes. Numerical analysis of these schemes reveals that the smoothing functions

control the order of the spatial resolution and that strong overlap among the cores of neighboring
elements is required to guarantee convergence (Beale & Majda, 1982ab; Beale, 1986). While the
third-order Gaussian functions have been shown to yield second-order schemes (Leonard, 1985;

Beale & Majda, 1985), it is the overlap condition that first motivated the modification of the 3D

vortex method, in which vortex elements are distributed along vortex tubes. In vortex methods

and vortex filament methods, vortex elements are redistributed along vortex tubes whenever the

strain causes the separation distance between neighboring elements to exceed the core radius.

However, the overlap condition cannot be enforced if the elements (or filaments) are strained in a

direction normal to the local vorticity vector. As a result, deterioration in the spatial resolution may

occur at long times as large discretization errors pollute the solution. In the present computations,

a scheme of local mesh refinement which subdivides computational elements along two directions

of strain is employed. This scheme, which is described below, has been shown to yield significant

improvement in the accuracy of the computations over vortex element computations (Knio &

Ghoniem, 1991).

Another advantage of the transport element method lies in the fact that tracking material

surfaces greatly simplifies the task of integrating the equation of motion of the density gradient.
"This is achieved by associatir, .pith each transport element an elementary surface area &4d(t) and a

unit normal to the surface area at the center of the element xj(t) = &4j4(t)l/Ai(t)/. In the

computations, this is done by requiring that material surfaces effectively constitute iso-scalar

surfaces, and adopting linear interpolation functions to describe the shape of the material surface
within each transport element. We take advantage of kinematical relationships which relate the

evolution of the gradient of a non-diffusive scalar in an incompressible fluid at a material point

Z(t), s(tX), to that of an elementary surface area centered around X, W(,z), initially having same

sense and direction as g. This relationship, which constitutes the analogue of the Helmholtz
vorticity theorem, may be expressed as: g(tX) = a(t:,X), where a = /,(OX)///4(O,Z)/. In view

of the preceding, we avoid integrating Eq. (7) simply by following the evolution the elementary

surface areas.

The description of the method is completed by specifying a technique for updating the

discrete values of vorticity associated with the transport elements. Two techniques are used in the
computations. In the absence of density variation, direct integration of the vorticity transport

equation is avoided. In this case, substantial computational savings are achieved by taking

advantage of the Helmholtz and Kelvin theorems since vorticity lines, identified by their
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circulation, evolve as material lines. In this variant of the scheme, vorticity changes according to

the stretching and tilting of elementary material segments lying in its direction, while the circulation

associated with a transport element remains constant. This procedure avoids the evaluation of the
velocity gradient, and retains the conservation of the volume of vorticity property possessed by

vortex filament methods (Greengard, 1986).

When dealing with a variable density flows, we can no longer apply the Helmnholtz vorticity

theorem. Therefore, we are not able to avoid the integration of Eq. (5), and, in doing so, the

evaluation of the velocity gradient. The procedure suggested here is to split that task in two

fractional steps, by first numerically integrating:

DO= aVu
Dt (8)

and, in a second step, integrating:

Dr p Dt (9)

This procedure is similar to the "viscous splitting" of the viscous vorticity transport equation
(Chorin, 1973), and thus may be termed "baroclinic splitting" of the equation of motion. In the
numerical integration of Eq. (8), Vu is found by analytically differentiating the desingularized

Biot-Savart law, while the same predictor-corrector employed to advance the computational mesh
is used to perform the time integration. Equation (9) is integrated in a single step, by estimating the
baroclinic torque from the knowledge of (i) p which is constant for each element, (ii) Vp which is

computed according to the deformation of the elements, and (iii) DuaDt which is approximated by a
first-order, backward finite difference in time, Du/Dt E_( t-g:-A4t))/At.

In the non-linear evolution of the flowfield, a strong and rapid deformation of the
Lagrangian computational mesh is experienced. This deformation causes the depletion of

computational elements in some regions of the domain where the separation distance between

neighboring elements becomes excessively large. In this work, we employ a local mesh

refinement scheme which splits a transport element into two whenever the average value of
opposing sides of the rectangles exceeds the value of the core radius. The scheme has been

described in detail in (Knio & Ghoniem, 1991). It essentially ensures that core overlap among

neighboring elements is satisfied and amounts to redistributing the vorticity and scalar fields into a
larger number of elements due to strong strain.

2.3. INIrIAL AND BOUNDARY CONDITIONS
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A variabde-density temporal vorticity layer of finite thickness is assumed at t = 0. A right-

handed rectangular coordinate system (xy,z) is chosen so that the initial vorticity distribution is
aligned with the positive y-axis, the flow being uniform in the streamwise x-direction. A second-

order Gaussian voricity distribution with standard deviation oris adopted to describe the variation

of vorticity within the layer. The thickness of the vorticity layer, o, and the free stream velocity are

chosen as length and velocity scales. The initial vornicity and velocity field are given, respectively,

by: my(x,O) = 21(0 -Vg)e.Vp(-z 21o2), o.(xO) = oV,(x,O) = 0, u(x,O) = erfz/lo), V(XO) = w(x,O) =

0. For o = 1, the velocity initial flowfield satisfies: u(z 1..) = ± 1. Furthermore, the layer is

assumed periodic in the sureamnwise x- and spanwise y-directions, with periodicity lengths Ax and
Ay respectively, and is unbounded in the cross-stream z-direction. The initial density distribution

is an error-function profile, and the reference density scale is chosen so that the low-density fluid

hasp= 1.

The periodicity boundary conditions introduce some difficulties in the evaluation of the
flowfield and of its gradient since we must consider the image system of the transport elements.
This system yields an additional term which must be added to the velocity induced by the elements
in the domain. Unlike the 2D case, this term may not be deduced from a potential flow, and closed

form expressions to include its effect are not known (Ashurst & Meiburg, 1988). In the

computations, we have adopted the procedure described in (Knio & Ghoniem, 1991), which

consists of computing directly the effect of the eight immediate neighbors of the elements, and

approximating the induced velocity of the images which lie within a square of side 400 Ax by

interpolation on a fixed grid. While previous studies have only included the contribution of a small

number of images (Ashurst & Meiburg, 1988), the procedure suggested in Knio & Ghoniem

(1991) is preferred because it yields more accurate representations of the velocity and velocity

gradient fields, and avoids the generation of numerical boundary layers at the spanwise boundaries

of the domain (Inoue, 1989).
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3. RESULTS

In this section, we focus on the deformation of the primary (essentially two-dimensional)

structure due to the 3D instabilities, and on the formation of secondary structures as these

instabilities evolve into their non-linear stages. We attempt to unify the various postulates on the
origin and mechanisms of the 3D motion. By comparing our results to available experimental

evidence (Breidenthal, 1980, 1981; Jimenez, 1983; Jimenez et al., 1985, Bemal, 1981, Lasheras

& Choi, 1988; Lasheras et al., 1986) and to numerical solutions (Ashurst & Meiburg, 1988,

Metcalfe et al., 1987, Lowery et al., 1987; Grinstein et al., 1989), we proceed to clarify some of

the aforementioned issues, and point to strengths and deficiencies of previously proposed models.
Another objective is to provide a base solution which, in turn, is used to highlight the baroclinic

effects in the variable-density layer.

3.1. SYMMETRIC, UNIFORM-DENSITY SHEAR LAYER
A temporal shear layer with streamwise periodicity length Ax = 132, which matches the

wavelength of the most unstable 2D mode (Ghoniem & Krishnan, 1989) and spanwise periodicity
length Ay = Ax/2, which lies close to the most amplified 3D mode of the translative instability

(Pierrehumbert & Widnall, 1982), was computed. The initial scalar distribution has a zero mean

and a unit difference across the layer. The shear layer is initially discretized among elements

distributed on a grid of 20x14x5 points along the x-, y-, and z-directions respectively. Thus,

computational elements are distributed on five material or iso-scalar surfaces. The selection of the

number of material surfaces is chosen as the minimum number required for accurate representation

of the eigenfunctions of the Kelvin-Helmholtz instability (Ghoniem et al., 1988). The core radius

of the smoothing fimnctions is chosen so that strong overlap among the cores of neighboring

elements is ensured, and the vorticity of the elements is obtained by minimizing the integral error

between assumed and discretized vorticity profiles (Knio & Ghoniem, 1991). In the
computations, we set 8 = 0.89 and the time step At = 0.1. The layer is initially perturbed in both
the streamwise and spanwise directions by displacing the computational elements in the cross-
stream direction using sinewaves of amplitude e = 0.024, i.e. by using the transformation zi - zi

+ e sin(2nxrl/x) + e sin(2xylly) (see figure 1.)

3.1.1. DEFORMATION OF MATERIAL SURFACES

Figures 2 and 3 depict perspective views of the iso-scalar surfaces initially located at z = 0,

and -132 respectively. The surface initially lying at z = 0 represents the middle surface where

most of the vorticity is concentrated, while increasing or decreasing the value of z corresponds to
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motion towards the top or bottom streams. The plots are generated from the point of view of an

observer located at (48,24,48).

Due to rollup of the layer, computational elements accumulate in the core which forms

during4.0 < t < 8.0. Previous analysis of the 2D solution indicates that, for the present amplitude

of the streamwise perturbation, the linear stages of the evolution of the primary 2D instability end
between t = 4.0 and 8.0, followed by roll-up. The amplitude of the spanwise perturbation remains

small for t < 8.0, i.e. its amplification is essentially suppressed during the growth of the 2D mode.

The growth of the eddy core in the mid-section of the domain continues while its spanwise

waviness amplifies. The amplitude of the spanwise perturbation increases significantly along the

core, an indication of the evolution of the translative instability (Pierrehumbert & Widnall, 1982).

This uneven axial displacement of the spanwise core is accompanied by an out-of phase

deformation of the braids under the influence of the streamwise vorticity generated within the

cores. The growth of the translative instability is shown by plotting the row of elements initially
aligned along the core centerline in figure 3b. Vortex lines aligned with the axis of the spanwise

core suffer a mild net deformation in the streamwise direction. The evolution of the spanwise core
instability occurs such that vortex lines constantly re-align with the direction of strain while being
stretched along their axial direction.

The fluid motion along the braids is illustrated in figure 3c. The stretching of the braids
leads to the intensification of streamwise vorticity produced as the braids are deformed by the
growth of the "translative" instability along the core, and strained by the 2D flowfield. Vortex
rods, which extend throughout the braids and are wrapped around the spanwise cores, form as

sireamwise vorticity rolls into coherent eddies. The material surfaces spin around the streamwise

axes of these eddies, which are located at the streamwise boundaries and middle of the domain.

This motion is accompanied by the thinning of the strip in the region separating neighboring

streamwise vortices, thus producing a "hairpin" vortex configuration. The resulting deformation

of the flow map is captured by the mesh refinement algorithm which can also be observed in the

surface plots. Since the flow is inviscid, the division and change of shape of the transport

elements describes the strain field, especially when the elements approach the spanwise core or

when they are attracted towards the axes of the vortex rods.

The adaptive response of the numerical scheme is illustrated in Table 1 where the surface

area, A, and of the number of elements, N, used along individual material surfaces are given.

While both grow rapidly following the roll-up of the vorticity layer, the increase in the number of

transport elements occurs at a higher rate than that of the surface. Though the middle surface

deforms at higher rate and carries a larger number of transport elements than the remaining

surfaces, small zones of high strain exist along all material surfaces. These zones necessitate the

introduction of new elements, an effect which precedes the severe deformation of the surfaces.
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Table 1
Normalized surface area, A, and number of elements, N, for the individual material layers.

t - 4.0 t = 8.0 t = 12.0 t = 16.0

Material Layer I A = 1.03 A = 1.12 A = 1.62 A = 3.26
Location: z = -132 N = 1.00 N = 1.20 N = 1.68 N = 3.80

Material Layer. 2 A=1.04 A =122 A =231 A =4.79
Location: z = -0.66 N = 1.00 N = 133 N = 2-54 N = 7.05

Material Layer: 3 A = 1.04 A = 1.43 A = 2.71 A =-5.41
Location: z = 0.0 N = 1.00 N = 1.49 N = 3.24 N = 9.3

Material Layer. 4 A = 1.04 A = 122 A = 231 A = 4.79
Location: z = 0.66 N = 1.00 N = 133 N = 2.54 N = 7.05

Material Layer.5 A = 1.03 A = 1.12 A = 1.62 A = 3.26
Location: z = 132 N = 1.00 N = 120 N = 1.68 N = 3.80

Figure 4 shows cross-sections through all the material (computational) surfaces at the time

the computations are stopped, t = 18.0. (As indicated below, the structure of the flow field does

not vary appreciably for t a 16 due to saturation of the instabilities. This additional frame is

provided to emphasize this feature of the computed flow; the subsequent discussion will be limited

to results obtained for t - 16). We take streamwise cross-sections through the braid and core in the
planes located at x = 2.0 (d) and x = 6.6 (c), respectively, and spanwise sections along the planes

y = 1.6 (b) and y = 33 (a). Small circles, whose radii are chosen smaller than the core radius, are

drawn to mark the intersection points with the transport elements. The streamnwise sections, (c)

and (d), show how the streamwise rods, resulting from the roll-up of the braids, give rise to the
formation of the mushroom structures (Bernal & Roshko, 1986; Lasheras, Cho & Maxworthy,

1986; Lasheras & Choi, 1988). They also depict how the extension of these rods around the

spanwise cores results in the establishment of a double mushroomn structure (Lasheras & Choi,
1988). The results show that the deformation of the material surfaces within the core is due to the

combined effect of three rows of strearnwise vortex structures: two rows resulting from the

extension of vortex rods to,% ards the core, and a third generated by the deformation of the core

itself under the action of the translative instability. This is shown schematically in figure 5.
The spanwise sections illustrate the effect of the translative instability on the cross-stream

position of the core and the shape of its cross-section. Figure 4 shows that the core is pushed
upwards and in the flow direction of the top stream in the "left" half of the domain, 0 < y < A.

while it suffers an antisymmetric deformation in the other half, as can be seen in figures 2 and 3.

The core loses its symmetry at most spanwise stations, as computational elements migrate in the

13



direction opposite to that of the core translation. The distribution of materi particles in the plane y

= 3.3, which intersects the central streamwise vortex rod, shows that the braids significantly

thicken at this critical spanwise location by entraining irrotational fluid from one side of the layer to

the other. This is be verified by simultaneously examining the streamwise cut through the plane x

= 6.6, which illustrates the entrainment of the mushrooms around the spanwise core.

3.1.2. VORTICITY AND SCALAR DISTRIBUTIONS

The motion of the material surfaces follows the evolution of the vorticity field. This motion
establishes entrainment patterns within the shear layer. Both are displayed in -figures. 6-9 in the
form of vorticity and scalar contours plotted, respectively, on two spanwise sections, y = 33, and
5.0, and on two streamwise sections, x = 2.0 and 6.6. The vorticity and scalar contours,
generated using different techniques, are generated at times t = 4.0. 8.0, 12.0, and 16.0. Vorticity
contours are generated by using the core smoothing functior - to compute the vorticity on a mesh of

40x40 points and processing the data with the NCAR contouring software. A considerable amount

of smoothing is introduced in this procedure, and the resulting plots are mainly used to deduce the

large-scale features of the vorticity field. A different approach, in which shaded areas of constant

scalar concentration are generated by interpolating the discrete scalar values on a 135x135-cens

grid, is adopted in the representation of scalar distribution.

A. Early Stages of the 3D Motion
At early stages, and until t = 8.0, the vorticity and scalar contours plotted at various

spanwise sections are similar, indicating that the growth of the 3D perturbations is suppressed

during the early stages of the 2D instability and that the spanwise vorticity remains essentially

uniform across the layer (Metcalfe et aL, 1987). Weak streamwise structures which change their

form between different streamwise stations develop, but have not yet gained enough strength to

alter the flow significantly. Meanwhile, a single row of counter-rotating vortices is found to repeat
itself at all streamwise locations of the domain. These structures are generated by tilting of the

vortex lines which, at t = 0, do not possess a streamwise vorticity component. The tilting of the

vortex lines into the streamwise direction(s) leads to the creation of zones of alternating sreamwise
vorticity whose locations and signs follow the shape of sinewave perturbation. For t > 4, the

streamwise vorticity is slowly intensified under the 2D strain field, producing higher values in the

braids of the eddy. With the roll-up of the vorticity layer and the formation of a spanwise core, the

edges of the core are stretched up and down towards the free streams, giving rise the top and

bottom rows of counter-rotating vortices which appear in figure 8a. These two rows are separated

by a third, which appears as a small circle whose vorticity is of the opposite sign to the previous
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two. As shown before, the latter is generated as a result of the growth of perturbations on the core

itself by the translative instability mechanism.

B. Late Stages of 3D Motion

For 8.0 < t < 12.0, the flowfield suffers a rapid transition to 3D motion leading to an

intensification of the streamwise vorticity in the braids. The total circulation of the streamwise

vortices, Ftot = f/oýj dA in the plane x = 2.0, increases from Fo,(8) = 2.617 to Fto,(12) = 4.492.

The streamwise vorticity grows under the action of the strong strain exerted by the large spanwise

cores in the neighborhood of the stagnation "lines" which anchor the braids (Lasheras & Choi,

1988). Meanwhile, the deformation of the core, which is attributed to the growth of the translative

instability, changes the alignment of the vorticity from predominantly spanwise into spanwise and

streamwise components. Although the maximum value of streamwise vorticity occurs within the

braids, the streamwise eddies generated by the core deformation have higher total circulation. At t

= 12.0, the middle row of streamwise vortices in figure 8a accounts for 65% of the total circulation

in the plane of the core. This is because the growth and maturation of the primary 2D instability,

which precede the 3D motion, force the migration of the spanwise vorticity from the thinning

braids into the core.

The total streamwise circulation in the plane dividing the core, x = 6.6, used as a measure

of the 3D effects in the flow, is shown in figure 10. It confirms the early observation that 3D

effects are small during the linear stages of the 21) instability and grow rapidly after roll-up. The

behavior of the curve changes from an algebraic growth for t < 9, to an exponential growth

between 9 < t < 13. At later stages, a non-linear regime characterized by a drop in the rate of

increase of the total circulation is observed. This is expected since the strain field induced by the

spanwise eddy leads to continuous intensification of the streamwise vorticity. For t > 16.0, no

qualitative changes in the structure of the vorticity and scalar fields is observed, an indication that

the instabilities tend to satuate (Mewcalfe et al., 1987).

At late stages, the streamwise vortices induce a strong secondary motion. As previously

indicated, this motion can be easily analyzed in the braids of the eddy where scalar mushroom

structures are generated. However, the scalar distribution is more complex in the core, where the

flow is under the combined influence of spanwise and streamwise vortices. The top and bottom

mushrooms, which form due to the roll-up of the braid vorticity and are identified in figure 8b,

originate in the braids and are then entrained towards the cores. Near the axis of the core, the

scalar distribution is affected by the flowfield induced by the three rows of alternating streamwise

vortices shown schematically in figure 5. The superposition of the fields of these vortices, whose

axes are deformed under the action of the translative instability, leads to the generation of "W-

shaped" scalar structures.
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The spanwise vorticity contours at t = 12.0, although similar to those encountered in a 2D
flow, exhibit a more compact core than in 2D due to stretching along the axis of the core. The
stretching of spanwise vorticity is accompanied by a non-uniform deformation of the cores at
different spanwise locations. The corresponding variation of the spanwise vorticity is depicted in
the last frames of figures 6 and 7. The core is shifted downwards and in the direction of the
bottom stream for A,12 < y < Ay, while it suffers an antisymmetric displacement for 0 < y < Ay./2
(see also figures 2-3). This confirms the results of the linear stability theory of perturbed vortex
cores which predicts a "translative" instability of the cores in the manner described above

(Pierrehumbert & Widnall, 1982). We also note that the point of maximum vorticity within the

core, which moves in the direction opposite to that of the outer boundaries of the core, no longer
coincides with its geometric center. This configuration resembles that observed in the evolution of
the eigenfunctions of the linear stability problem of vortex rings, which also predicts a similar
behavior for any locally curved vortex filament (Widnall and Tsai, 1977). We recall that the most
amplified mode of the translative instability mechanism is characterized by an eigenfunction which
changes sign within the vorticity core. This property also arises in the linear stability of vortex
rings as a necessary condition for eigenfunction instability. In both cases, the amplification of the
instability forces the migration of the "inner" core in the direction opposite to the motion of its outer

boundaries.
This mechanism appears to be connected to convective currents within the core and not to a

uneven vorticity stretching. This is verified by inspecting the scalar distribution in the same cross-
sections which shows that the scalar field follows a similar redistribution and loses its symmetry.
This motion leads to preferential entrainment of irrotational fluid from the free streams. The

section of the core which is displaced upwards, 0 < y < A,/2, entrains more fluid from the bottom

stream, while the section which is pushed downwards consists mainly of the top-stream fluid.

This form of preferential entrainment resembles that reported experimentally (Bernal & Roshko,

1986).

The symmetry of the vorticity and scalar distributions is preserved at the spanwise mid-

section of the domain, since, as predicted by the theory, the curvature of the core vanishes at that
location. Nevertheless, this plane is of interest since it intersects the streamwise vortex rod

centered in the domain (see figures. 2-3). This rod appears in the form of a "tongue" of negative
vorticity which extends through the braids to the top and bottom edges of neighboring cores (figure

6a, t = 16.0). At this plane of zero curvature, the action of the translative instability is manifested

by the presence of two vorticity maxima. A similar vorticity distribution is obtained in unstable

vortex rings at azimuthal stations where the curvature of the axis of the core vanishes (Knio &

Ghoniem (1988). In the shear layer, these stations lie within the planes y = 0, Ay/2, and A.y,
while, in the vortex ring, the local curvature vanishes whenever the curvature induced by the
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growth of azimuthal bending waves cancels that of the undisturbed vortex ring. The resemblance

between the two cases bears important implications regarding the implementation of numerical
schemes and the modeling of the vorticity layer. The numerical study in Knio & Ghoniem (1990)
shows that the dynamics within concentrated vortices may not be properly predicted unless a

sufficiently large number of computational elements is used to discretize the the vortex cores. As a
result, the computations could have missed or spuriously predicted the evolution of the translative

instability, had we chosen to simulate the vorticity layer by distributing the transport elements on a
single material layer, or to model the layer as a thin vortex sheet, as in Ashurst & Meiburg (1988)

and Inoue (1989).

3.1.3. ENTRAINMENT ENHANCEMENT

The development of the 3D instabilities promotes shear layer entrainment (Knio &

Ghoniem, 1991). To quantify this effect, the shear layer entrainment is measured by introducing
"an "eddy size" parameter, S, in 2D and 3D. In 2D, the eddy size is defined by the measure of the

region enclosed between the surfaces where the normalized scalar first deviates by 3% from the
corresponding free stream value. This yields a local height of the eddy, Z2D(x), which, when

integrated over the streamwise length of the domain, gives a mean eddy size,

S = ffAx Z2D(x) dx
Jo (10)

According to this definition, the eddy consists of the union of the rotational fluid and the
irrotational fluid trapped between the braids and the core (see figure 11). In 3D, two similar
definitions are considered. The first is obtained by measuring the height of the eddy at each

spanwise and streamwise location, Z3D(xy), and then integrating over the spanwise and

streamwise periodicity length to get an eddy size,

S3D = Z3D(xy) dy dx

While this definition is a natural extension of that in 21), the contribution of the irrotational fluid
trapped by the mushroom structures is neglected in the averaging process. To account for this

additional entrainment mechanism, we define a third measure, S'3D, by:

17



S3D = AY f Z3D(x) dx (12)

where Z'3D(X) = maxy(Z3D(xy)).

The eddy size is normalized by the spanwise and streamwise periodicity lengths in 3D
computations and by the streamwise periodicity length in 2D, so that the resulting values represent
an average thickness of the scalar distribution. The entrainment enancement is shown in figure 12
by comparing the eddy size for 2D and 3D computations. With the roll-up of the layer, t - 8.0,
entrainment curves start to grow with the curves in 3D acquiring a higher growth rate. The
deviation in the behavior of the 2D and 3D solutions coincides with the 3D transition depicted in
figure 10. Thus, the transition to 3D motion is accompanied by an "entrainment transition." By
the end of the simulation, the total entrainment S3D increases by 75% over its 2D counterpart,
while comparison of S'3D and S3D indicates that the formation of the mushroom structures
contributes significantly to entrainment enhancement.

The eddy size parameters are also used to quantify the preferential entrainment of fluid at
various sections of the domain. This form of entrainment reverses itself every half spanwise
wavelength so that the composition of the eddy does not favor either free stream. However, in the
region 0 < y < AyI2, preferential entrainment of lower stream fluid is observed. Preferential

entrainment may be estimated by subdividing the integrals in Eqs. (10-12) over the regions defined
by: s > sav, and s < Say, thus yielding: (S3D)+, (S3D)', (S3D)+, and (S"3D)-. At t = 16.0, the
entrainment ratios in the area 0 < y < A,/2, (S3D)'I(S3D)+ = 1.787, and (S3D)'I(S'3D)+ = 3.487.
These ratios are reversed in the area Ay/2 < y < l,, so that unit net entrainment ratios are obtained.
The difference between the two ratios is a manifestation of the role of streamwise vortices in
inducing preferential entrainment patterns (Bernal & Roshko, 1986).

3.1.4 DISCUSSION
The results of the computations show that the evolution of the shear layer from a perturbed

steady state using monochromatic 3D disturbances consists of three stages: (1) In the first stage,
an essentially 2D growth of the perturbations, in the form of linear amplification of the Kelvin-
Helmholtz instability modes, is observed. During this phase, all 3D activity is suppressed. This is
followed by a non-linear 2D growth of the fundamental mode, leading to roll-up and the formation
of a concentrated spanwise eddy core. (2) The roll-up is aedby a rapid growth of the 3D
modes, in the form of a deformation of the spanwise eddy and an instability in the braids. (3) The
3D modes undergo a non-linear growth which results in the redistribution of the streamwise
vorticity into vortex rods and in the generation of the scalar mushroom structures.
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While the 2D instability is relatively simple to describe, the 3D motion in the cores and

braids of the vortex structures are more involved. The stability of the rolled layer was examined by

Pierrehumbert and Widnall (1982) using a periodic array of Stuart vortices. They found that this

array was linearly unstable to a mode they called the translative instability, which leads to a

deformation of the spanwise eddies according to the strain field induced by the eddy and by its
image vortices. The instability appearing in the braids was studied in the work of Corcos & Lin

(1984), who proved the fundamental nature of the instability of a strained streamwise vorticity and

showed that the growth of this mode is suppressed during the amplification of the 2D instability.

The translative instability is fundamentally different from the Corcos mechanism since the braids of
the spanwise vortices, observed in the case of a shear layer, are not well represented by the Stuart

vortices. Thus, the two instabilities differ in form. The translative mode is an instability of the

spanwise cores, that is of large concentrated vortices subject to strain normal to their axes, while

the Corcos mechanism predicts the instability of streamwise vorticity when subjected to strong

extensional strain.

The absence of braids does not preclude the formation of vortex rods by the strain field

which may cause the vorticity within the core to migrate outwards preferentially (Grinstein et aL,

1989). On the other hand, the ability of the streamwise vortex rods generated by the Corcos

mechanism to impart a core deformation similar in shape to that obtained by the development of the

translative instability (Corcos and Lin, 1984) complicates the task of separating the role of these

two instabilities. This difficulty has led researchers (Ashurst & Meiburg, 1988; Lasheras & Choi,

1988) to emphasize the importance of a non-linear interaction between the spanwise cores and the
streamwise vortices. Our results, however, indicate that the translative instability within the cores

grows simultaneously with the intensification of the rods. Since, as previously mentioned, a mild

straining of the streamwise vorticity is observed prior to the roll-up of the spanwise vorticity, and

since the translative instability is a linear instability mechanism, the importance of such an

interaction should be downplayed.

The formation of the streamwise vortex rods leaves its mark on the flow in the form of

scalar mushroom structures. The translative instability, on the other hand, is manifested by an

asymmetric spanwise vorticity distribution within the core, which resembles that predicted by the

growth of unstable eigenfunctions of the Widnall instability of vortex rings (Widnall & Tsai,

1977). The alternating preferential entrainment patterns which result from the amplification of the

instability mode compound the difficulty in experimentally visualizing the scalar structures

mentioned by Corcos & Lin (1984), since uniform-density spatially-developing shear layers

entrain more fluid from the faster stream (Dimotakis, 1986). Despite these difficulties, a
deformation consistent with the development of the translative instability was inferred by Jimenez

(1983) and by Bernal & Roshko (1986) based on spanwise correlations of velocity fluctuations.
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The analysis of the evolving vorticity structures using numerical simulation makes a

valuable contribution since direct and detailed measurements of the vorticity field are usually not

possible or extremely cumbersome. Such difficulties are primarily encountered in experimental

studies in which velocity correlations (Browand & Troutt, 1980; Jimenez, 1983; Wygnansky et

al., 1979), passive scalar or dye techniques (Bernal & Roshko, 1986; Jimenez et al., 1985), or

low heat release chemical reactions (Breidenthal 1981; Lasheras et al., 1986; Lasheras & Choi,

1988) have been used as substitute tools for deducing the topology of the vorticity field. Our

results suggest that such efforts should be conducted with great care, because a large number of

mechanisms contributes to their formation. The computed results reveal some of the difficulties

arising from the lack of an accurate knowledge of the vorticity field. In particular, it is shown that

the deformation of material surfaces, visualized for instance by injecting marker particles in one of

the fluid streams, may not be sufficient to fully determine the corresponding vortical structures,

especially if one cannot a priori locate a given material surface with respect to the layer of highest

spanwise vorticity. The rapid variation of the strain field around the latter causes substantially

different deformations of adjacent layers, thus preventing immediate correlations with the

underlying vortical structures. On the other hand, the visualization of vorticity structures by means

of the products of a unity-stoichiometry, low-heat-release chemical reaction may remove some of

these difficulties, since, as observed by Knio and Ghoniem (1992), the products of reaction are

always entrained into zones of high vorticity.
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3.2 VARIABLE-DENSITY SHEAR LAYER

Density variation, characterized by a density ratio of the free streams, plays an important

role in the evolution of heterogeneous shear layers created by the merging two streams of unequal

density and velocity. It has been observed that a non-unity density ratio alters the spatial growth of
the layer and influences the entrainment induced by the vortical structures embedded therein, even

when gravity effects are weak (Brown & Roshko, 1974; Ho & Huerre, 1984; Dimotakis, 1989).

In chemically-reacting flows, density variation is generated by heat release which leads to the

generation of zones of high temperature and low density. Here too, the presence of two or more
zones of different density is found to affect the stability and development of the flow. This effect

depends on both the details of the density and vorticity distributions, as it may constitute a

stabilizing or a destabilizing mechanism (Riley & McMurtry, 1989; McMurtry et al. [47]; Ghoniem

& Krishnan, 1988).

In this section, the effect of weak density variation on 3D instability is investigated by

computing the onset of 3D motion in an incompressible, variable-density shear layer. While this

study is ultimately motivated by the desire to predict high-heat-release reactions in vortical flows,

the simplified model allows us to focus on the dynamic effects of baroclinic vorticity. In a 3D
flow, this stepwise approach is important because of the presence of a vorticity stretching tern.

One case with small density ratio, pma n = 2, is considered. To avoid a re-initialization of the

scalar (density) gradient field, we use the same discrete scalar gradient values of the previous case
but set p11, = 1.5. Therefore, in the high-density top free stream, p = 2, and in the low-density

bottom free stream, pmn = 1. The same initial perturbation used in the previous case is applied,

and the computations are performed to observe the growth of both the 2D and 3D instabilities.

The linear theory of variable-density shear layers (Ghoniem & Krishnan, 1989; Krishnan,
1989) shows that the wavelength of the most amplified mode of the 2D instability depends weakly

on, and the growth rate are almost independent of the density ratio, while its phase velocity is
strongly varied strongly with the density ratio. Unlike the uniform-density case, the most

amplified mode in the variable-density layer evolves as a traveling wave moving in the direction of

the high-density stream with phase speed increasing with the density ratio. This effect has been

used to explain the difference in growth rates in variable-density, spatially-evolving layers
(Dimotakis, 1989, 1986; Brown & Roshko, 1974, Ghoniem & Krishnan 1989). For the density

and vorticity profiles used in the simulation, and a density ratio of 2, the linear stability theory

predicts a phase speed c = 0.17. We note that the stability analysis performed by Ghoniem &
Krishnan (1989) differs slightly from the earlier investigation of Maslowe & Kelly (1971), who

showed that, in the limit of vanishing Richardson number, density stratification tends to stabilize a

temporal shear layer. The differing conclusions are due to the assumed density profiles. The

analysis of Maslowe and Kelly, which was primarily concerned with atmospheric and oceanic
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flows, assumed an exponentially-varying density distribution. This distribution is contrasted with

the error-function profile which is more representative of high-speed shear flows, where small
Richardson numbers are more frequently encountered.

The effect of the density variation on the linear stability of 3D perturbations is not known at
present. 3D instability of variable-density shear layers is not a simple extension of that of the
uniform-density case since one must deal with the added difficulty of formulating a steady initial

condition of the stability problem. In the uniform-density case, Stuart vortices were used to
approximate the flow of the rolled layer (Pierrehumbert & Widnall, 1982). The existence of
similar solutions in the variable density case is complicated by the convective motion of the vortices
due to the baroclinic generation of vorticity, as observed in 2D simulations (Ghoniem & Krishnan,
1989). As a result, and because we have approached the study of 3D temporal layers with the
intention of investigating deviations from the 2D case, we were content with keeping the same

spanwise periodicity length used in the uniform-density case. This prompted us to select a small
value of the density ratio, so that comparisons with the preceding results are justified.

3.2.1. DEFORMATION OF MATERIAL SURFACES

Figure 13 shows the evolution of a material surface initially lying in the planes z = 0. At

early stages, the motion of the middle layer bears strong resemblance to its counterpart in the

uniform-density case (figure 2). This similarity is expected, and in agreement with the results of

the linear stability theory which predicts almost identical growth rates of the 2D perturbation. The

first manifestation of the convective motion of the instability wave is observed once the roll-up of
the layer is completed and a well-defined eddy core is formed (t > 8). During this period, the 3D

perturbation is amplified causing the core to deform in the way similar to that predicted by the

translative instability of uniform-density cores. However, the (deformed) axis of the core no

longer coincides with the streamwise mid-section of the domain, but shifts in the positive

streamwise x- direction, i.e. in the direction of the high-density top stream. The braids suffer a

deformation whose shape is of the same type observed in the uniform-density case.

The total surface area of the material surfaces and the number of transport elements, shown

in Table 2, exhibit the same trends described in the uniform-density case. However, the motions

of surfaces lying on the top and bottom sides of the middle layer are no longer similar because of

the asynmnetry of the flowfield. Prior to the maturation of the 3D instability, t < 12.0, the material

surfaces lying on the low-density side are deformed at higher rate than those located in the heavier

fluid side of the layer. At later stages, this trend is reversed. This asymmetric straining of the

surfaces is related to the asymmetry of the spanwise vortices whose rotation resembles the

eccentric spinning of egg-shaped cores.
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While the uneven deformation of the braids is readily verified at later stages, the

asymmetric stretching of streamwise vorticity affects the entrainment patterns in the neighborhood
of the spanwise cores (Brown & Roshko, 1974; Dimotakis, 1986, 1989; Ghoniem & Krishnan,
1989). However, the motion of the Lagrangian mesh cannot be used to deduce this effect because

the vorticity lines in a variable-density flow cannot be directly identified with material lines, and the

deformation of material surfaces is not sufficient to completely determine the fate of the vorticity.

In fact, detailed examination of the motion of the material surfaces only indicates that, in the braids,

streamwise vorticity re-organizes into rods, leading to the formation of the mushroom structures

that cover the eddy cores, and that the spanwise cores propagate in an asymmetric flowfield.

Table 2
Normalized surface area, A, and number of elements, N, for the individual material layers.

t = 4.0 t = 8.0 t = 12.0 t = 16.0

MaterialLayr. 1 A = 1.03 A = 1.12 A = 1.70 A = 3.47
Location: z = -132 N = 1.00 N = 1.30 N = 2.00 N = 4.75

MaterialLayer.2 A=1.04 A=122 A =235 A =4.74
Location: z = -0.66 N = 1.0 N = 1.40 N = 2.84 N = 7.75

MaterialLayer. 3 A = 1.04 A = 1.43 A = 2.71 A = 5.48
Location: z = 0.0 N = 1.00 N = 1.55 N = 3.65 N =10.11

Material Laye. 4 A = 1.04 A = 1.21 A = 222 A = 4.78
Location: z = 0.66 N = 1.00 N = 1.41 N = 2.93 N = 8.63

Material Layer. 5 A = 103 A = 1.12 A = 1.57 A = 3.11
Location: z = 132 N = 1.00 N = 128 N = 1.71 N = 3.80

Signs of the influence of the baroclinic vorticity and the associated asymmetry of the strain

field on the evolution of the 3D perturbation appear in the cross-sections through the material

surfaces. These sections, shown at t = 16.0 in figure 14, are generated on a streamwise section
traslated in the dicdtion of the heavy stream to x = 93 in order account for the convective motion

of the eddy. The mean suremnwise location of the core is first estimated by translating the plane

X112 = 6.6 by ct, c being the phase speed of the 2D Kelvin-Helmholtz wave obtained from the

linear theory. This estimate is then refined by considering neighboring planes on both sides of the

plane x = x12 + ct. It is found that the mean sweamwise location of the eddy shifts from x = 6.6 at

t = 0, to x = 73, 8.0, 8.6, and 9.3 at t = 4.0, 8.0, 12.0, and 16.0 respectively. Thus, the

convective speed of the eddy is closely approximated by c even in the non-linear stages (Ghoniem
& Krishnan, 1989). For the remaining sections, we still use the planes y = 3.3 and 1.6 to
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visualize the variations along the span of the layer, and the plane x = 2.0 to obtain a representative

streamwise section of the braids.

The large-scale features of the instability in the variable-density flow can be approximated

by those found in the previous case simply by accounting for the convective motion of the eddy.

However, cross-sections through the core reveal that the mushrooms entrained on top and bottom

of the core are not similar. The top mushroom, lying on the side of the high-density fluid, is

larger, more rounded, and less developed than its counterpart on the bottom side of the eddy. The

concentration of computational elements, visualized by darker areas on the plots, is higher in the

lower mushroom especially near the axes of the streamwise vortex rods. Thus, streamwise

vorticity is higher for the bottom vortex rods, leading us to expect higher rates of spinning around

their axes, and a significant departure from the entrainment patterns observed in the previous case.

3.2.2 VORTICITY AND DENSITY FIFLDS

The spanwise structure of the layer is shown in terms of the spanwise vorticity and density

contours, plotted in figures 15 and 16 in the spanwise planes y = 3.3 and 5.0, respectively. The

streamwise structure of the layer is examined by considering cross-sections through the core and

the braid. The core cross-sections, figure 17, are generated in the y-z planes coinciding with the

mean streamwise location of the eddy. We use the fixed streamwise plane x = 2.0 to cut through

the braids, the results being shown in figure 18. Results are shown at t = 12.0 and 16.0, i.e.

following the growth of the 3D modes.

A qualitative similarity between the uniform- and variable-density flow in terms of the types

and shapes of vortical structures that are formed as a result of the evolution of the various

instabilities is noticeable. The variable-density layer can be characterized by the same stages of

evolution as the uniform-density layer- (i) an early growth of the Kelvin-Helmholtz instability

during which the layer remains essentially 2D; (ii) a non-linear evolution accompanied by the

formation of a spanwise core as a coherent eddy, the onset of the 3D undulation along its axis, and

the generation of streamwise vorticity; and (iii) a maturation of the translative instability, the

redistribution of the streamwise vorticity into vortex rods, and the formation of scalar mushroom

structures. The differences between the two cases, which arise due to the baroclinic generation of

vorticity, are summarized in the following:

(1) The evolution of the Kelvin-Helmholtz mode is modified by a finite phase speed of the waves

in the direction of the high-density stream. The motion of the waves is uniform in all spanwise

stations, and persists into the non-linear stages.

(2) The vorticity field loses its symmetry as a result of the vorticity generated by the baroclinic

torque. The loss of symmetry is not restricted to any particular spanwise plane, and is not due
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to the amplification of 3D modes as it is also observed in 2D simulations (Ghoniem &

Krishnan, 1989).

(3) The loss of symmetry affects the streamwise vorticity via its asymmetric strain field. For t <
12.0, the top layer of streamwise vortices, lying on the side of the high-density stream, is
considerably weaker than its counterpart on the bottom side, while the trend is reversed at later
stages. At t = 12.0, Ftop9Fbot = 0.536, and increases to Ftop#Fbot = 1.12 at t = 16.0. Thus,

the strength of the streamwise vortices changes on both sides of the eddy in accordance with
the deformation of material surfaces. This implies that, for 12.0 < t < 16.0, the asymmetric

straining of streamwise vorticity leads to the establishment of spanwise entrainment patterns
which are biased towards the high-density side. This bias is due to the difference in strength of
the streamwise rods wrapped on opposite sides of the spanwise core, and opposes the effect of
the streamwise (2D) entrainment currents which favor low-density fluid.

(4) The loss of symmetry is accompanied by a net asymmetric entrainment of the low-density fluid.
We distinguish between the preferential entrainment associated with the growth of 3D modes,

and the entrainment asymmetry due to the baroclinic generation of vorticity. The asymmetric
entrainment of the low-density fluid combines with the preferential entrainment of low-density
fluid in 0 < y < A12, produces an asymmetric distribution at the spanwise mid-section of the

domain, and counteracts the effect of the 3D instabilities in A/2 < y < Ay. At t = 16.0, the

entrainment ratios, (S3D)-I(S3D)+ = 2341, and (S'3D)I(S'3D)+ = 4.458 in the area 0 < y <
A92, while the net entrainment ratios, (S3D)-I(S3D)+ = 1245, and (S'3D)I(S'3D)+ = 1.140.

Thus, the spanwise entrainment patterns induced by the streamwise vortex rods lead to a

reduction of the asymmetry in the entrainment ratio.

3.2.3 BAROCLINIC VORTICITY

In order to isolate the effects of the density variation from those associated with vortex
stretching, the distribution of the baroclinic torque is used. Figure 19 shows the spanwise
component of the baroclinic torque, vy, in the planes y = 3.3 and 5.0, while the streamwise

component Tx, is shown in figure 20 for the core and braid sections. At early stages, t < 8.0, the

spanwise component of the baroclinic torque is concentrated in two zones of opposite signs. The
initial vorticity of the layer is depleted in the left-hand side of the domain and enhanced in the
remaining part. Thus, baroclinic vorticity ipms an asymmetry on the vorticity distribution such

that the part of the layer displaced towards the high-density fluid is weakened, while that pushed in
the direction of the low-density stream is intensified. As suggested in Ghoniem & Krishnan
(1989), this asymmetry may be used to explain the origin of the motion of the Kelvin-Helmholtz

mode.
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Reduction of spanwise vorticity on the high-density side of the layer, and its enhancement

on the low-density side is responsible for the observed difference in the strength of the st'eamwise

vortices between the top and bottom rows of the core. As shown in figure 20, the streaxnwise

component of the baroclinic term is extremely weak during the linear stages of the primary

instability. Therefore, the asymmetry in the streamwise vorticity distribution must be due to the

uneven tilting and stretching of layers of varying strengths so that density variation effects are

primarily felt through changes in the spanwise vorticity.

At later stages, however, baroclinic torques becomes strong enough to directly affect the

evolution of the streamwise vorticity. Density variation does not lead to a net intensification or

weakening of the streamwise vortices in the braids since the baroclinic term changes sign within

each streamwise eddy. Nevertheless, the baroclinic term is distributed in such a way as to weaken

the top parts of the streamwise eddies and to strengthen their bottom parts, leading to a downward

drift of the vortex rods. On the other hand, in the core, baroclinic torques contribute to the

asymmetry between the top and bottom rows of streamwise vortices. While the middle row of

vortices is affected in a similar way as that observed in the braids, figure 20 indicates that

baroclinic torques tend to stnmgthen the vorticity of the bottom row at the expense of the top row.

Thus, density variation plays two different roles in the development of 3D form of the

layer. At the early stages, it generates an an asymmetric strain field by imparting a convective

motion on the core. At the later stages, it redistributes the vorticity within the core. The

development of the instability modes in the variable-density shear layer highlights the importance

of the asymmetry of the flow and strain fields. In the interpretation of the origin of the complicated

siuctures associated with the 3D effects, the influence of strain and density gradient, which are

respectively taken into account in the equation of motion through the vorticity stretching and

baroclinic production terms, may be hard to distinguish in the results. To facilitate this task, we

consider the case of a uniform-density shear layer with an asymmetric vorticity distribution at t = 0,

and pospone further discussion until results of the latter case are analyzed.
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3.3 UNIFORM-DENSITY, ASYMMETRIC SHEAR LAYER

Shear layers with asymmetric vorticity profiles are frequently encountered. Typically,

these layers are formed following the merging, downstream of the splitter plates, of boundary

layers of unequal thicknesses and opposite signs of vorticity. The velocity profile associated with

the asymmetric vorticity distribution thus produced can be modeled as the superposition of a

symmetric velocity profile induced by an idealized symmetric vorticity distribution, and a wake

component biased towards the low-velocity stream. As shown by Koochesfahani & Frieler
(1989), the wake component becomes important when the density of the slow steam is much

larger than that of the fast stream. In such instances, linear stability analysis shows that the early

development of the layer is dominated by the wake mode whose amplification rate is higher than

that of the shear layer mode. In the remaining cases, the shear layer mode is dominant, and leads

to the familiar roll-up of the Kelvin-Helmholtz waves.

While the wake component might be neglected in 2D models, results of Ashurst & Meiburg

(1988) have shown that the detail of the vorticity distribution plays an important role in the
development of 3D instability modes. Using two vorticity layers of opposite sign, they predicted
an asymmetric spacing of the streamwise vortex rods similar to that experimentally observed
(Lasheras & Choi, 1988). However, this approach is complicated by the difficulty in specifying
the initial strength and separation of the vorticity layers. In fact, the initial separation of the
individual vorticity layers is not uniquely determined in that model, and large separation distances

may lead to the independent roll-up of each layer, a behavior that is not obtained in shear layers.

In our study, consideration of shear layers with asymmetric vorticity profiles is motivated

by the results of the variable-density layer. In particular, the numerical experiment is designed to

mimic the early effects of density variation which were shown to promote the spanwise vorticity of

the low-density stream at the expense of that on the high-density side through asymmetric strain.

This imitation is obtained by perturbing the second-order Gaussian vorticity profile to yield the

asymmetric vorticity distribution shown by a broken line in figure 1. A single vorticity layer in

which the velocity increases monotonically from one stream to the other is considered. The scalar

is assumed passive, and its initial profile is the same as that used in Section 3.1. We keep the same

dimensions and boundary conditions, and apply the same perturbation at the start of the

computations. Since the deviation from the symmetric Gaussian profile is small, we expect similar

growth characteristics of the 2D component of the perturbation, although its wavelength may not

correspond to that of the most amplified Kelvin-Helmholtz mode.

3.3.1 DEFORMATION OF MATERIAL SURFACES

Perspective views of the material surface initially lying in the plane z = 0, shown in figure

21, exhibit qualitative similarity to that of the first case and hence a detailed analysis of the
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Lagrangian motion is omitted. Our discussion, will be restricted to the features by which the

asymmetric layer may be identified. The deformation of the material layers is asymmetric with

respect to the surface initially at z = 0, as indicated in Table 3. This development resembles that
observed in the variable-density case where baroclinic vorticity generation produces a similar

asymmetric strain field. Despite this similarity, the the two cases can be distinguished by the fact

that, in the asymmetric uniform-density layer, the core does not exhibit any convective motion.

The cross-sections of the material surfaces, plotted in figure 22, show that the asymmetry is

primarily exhibited in the core where the top and bottom mushrooms are distinguishable.
However, unlike the previous case, there is no indication that they have different strengths.

Table 3
Normalized surface area, A, and number of elements, N, for the individual material layers.

t = 4.0 t = 8.0 t = 12.0 t =16.0

Material Layer.I A = 1.03 A = 1.14 A = 1.72 A =3.54
Location: z = -132 N = 1.00 N = 120 N = 1.69 N = 4.16

Material Layer 2 A = 1.04 A = 124 A = 2.40 A = 5.31
Location: z = -0.66 N = 1.00 N= 1.33 N = 254 N = 8.55

Material Layer. 3 A = 1.04 A = 1.44 A = 2.78 A = 5.87
Location: z = 0.0 N = 1.00 N = 1.44 N = 351 N = 9.95

Matial Layer 4 A = 1.04 A = 122 A = 236 A = 5.01
Location: z = 0.66 N = 1.00 N = 131 N = 2.48 N = 7.35

Material Layer. 5 A = 1.03 A = 1.11 A = 1.56 A = 3.38
Location: z = 1.32 N = 1.00 N = 1.15 N = 1.73 N = 3.91

3.3.2 VORTICrIY AND SCALAR DISTRIBUTION

Figures 23-26 show scalar and vorticity contours plotted in the non-linear stages of

evolution of the flow, t = 12.0 and 16.0. The spanwise sections show some but not all the effects

associated with density variation exist in this case. While the convective motion could not be

captured, the vonicity and scalar distributions exhibit weak asymmety at all spanwise cuts, and the

rotation of the core resembles the eccentric rotation of an oval-shaped body. Asymmetric
entrainment patterns, whereby more fluid from the bottom stream reaches the core, are also

established. At t = 16.0, the composition of the eddy slightly favors bottom layer fluid, as the net

entrainment ratios admit small deviations from unity, (S3D)r/(S3D)+ = 1.026, and (S'3D)'I(S'3D)÷

= 1.037. This corroborates our discussion of the motion of the material surfaces, whose

deformation is found more severe in the bottom stream. On the other hand, the similarity between
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the asymmetric and variable-density layers is restricted to the fact that these layers can be identified

by larger spanwise vorticity values.
The spinning of the asymmetric spanwise eddy causes the generation of streamwise vortex

rods of different strengths as they approach the core. Unlike the variable-density case, the vortex

rods on the bottom side are intensified at a lower rate in the early stages, t < 12.0, and this effect is

reversed at the later stages. At t = 12.0, the ratio of the circulation of the two sweamwise vortices
is FropFbot = 1313, and decreases to Ftop/Ft = 0.982 at t = 16.0. This asymmetry occurs

mainly as a result of the difference in shape and size of the streamwise rods as the maximum

vorticity values in both remain close. A simplified model clarifying the origin of the difference in

strengths between the streamwise rods can be constructed by noting that the stretching of the

streamwise vorticity occurs along the steamwise boundaries of the domain where the braids are

anchored and pulled towards the core of the eddy. In the braids, the strain is weakly dependent on

the detail of the distribution within the core. In fact, the strain in the braids may be approximated

by concentrating the spanwise vorticity of the core along its center. Thus, the asymmetry of the
vorticity distribution of the spanwise core and of its induced flow and strain fields, are not

expected to play a major role in the production of streamwise vorticity. The observed asymmetry

becomes essentially a consequence of the eccentric spinning of the spanwise cores.

In the variable-density layer, the above description is modified by the baroclinic production
of vorticity. The streamwise component of the baroclinic torque, rx, is small in the braids, so that

the production of streamwise vorticity there is dominated by strain and the contribution of the

baroclinic torque to the strength of the streamwise vortices only appears as a modulation of the
local vorticity values. On the other hand, x increases significantly as we approach the core.

Focusing on the later stages of the flow, this observation is justified by realizing that fluid

acceleration, which controls the production of baroclinic vorticity, becomes dominated by the

convective acceleration. In turn, the convective acceleration must be larger in regions of higher

curvature. Therefore, in the variable-density layer, as the streamwise vortices approach the core,

their strengths is affected by the baroclinic source term which is shown to strengthen (weaken) the

streamwise vorticity of the vortex rods lying on the low-density (high-density) side.

Our numerical results have shown that three mechanisms can lead to symmetry loss in 3D

temporal shear layers. The first is associated with the growth of the translative instability which

leads to a preferential entrainment pattern reversing itself every half spanwise wavelength of the

instability. The second is caused by an initially asymmetric vorticity distribution which induces

asymmetric entrainment currents favoring the free stream having higher spanwise vorticity values.

Finally, baroclinic vorticity generation plays an important role in the formation of asymmetric

structures by imparting a convective motion on the cores and redistributing the vorticity within the
cores. These mechanisms should be distinguished from similar effects occurring in 2D and 3D
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spatially-developing layers, in which individual mechanisms may be hard to isolate since

asymmetric entrainment favoring the high-speed stream is observed before the transition to 3D
motion, and the location of vortex amalgamation, which lead to the formation of composite

structures of even higher complexity, is not easily predicted (Dimotakis, 1986).

The use of asymmetric vorticity distribution, with a strong negative component, has been

suggested by Ashurst & Meiburg (1988) as a means of simulating the effect of the velocity ratio.

Their computations were able to capture the asymmetric spacing of the streamwise vortices,
observed experimentally by Lasheras & Choi (1988). This asymmetric spacing was not observed

in our computations which did not include a negative initial vorticity component. Thus, we

conclude that the presence of negative vorticity alone cannot be responsible for this effect and the

asymmetric spacing of the streamwise vortices is not a property of the "primary" 3D structure.
However, the development described by Ashurst & Meiburg (1988) could occur during the

merging of the distorted spanwise eddies. In view of the results of Metcalfe et al. (1987), who

showed that in the absence of pairing, both 2D and 3D instabilities tend to saturate, the suggestion

that the asymmetric spacing is a product of a higher-order instability could be justified. This

interpretation is consistent with the experimental findings of Bernal & Roshko (1986), and with the
numerical simulations of Grinstein et al. (1989), who observed that an asymmetric reorganization

of the streamwise vortices occurs after the merging of the distorted spanwise eddies.
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5. CONCLUSIONS

The transport element method was applied to study the evolution of temporal, doubly-
periodic, uniform- and variable-density shear layers. The numerical schemes are Lagrangian and
adaptive. They are based on mtcking the vorticity, scalar and scalar gradients, discretized using a

finite number of computational elements. Three cases are considered: (i) a uniform-density

vorticity layer with symmetric vorticity profile, (ii) a variable-density vorticity layer, and (iii) a

uniform-density asymmetric layer. In the uniform-density case, we take advantage of Kelvin's

circulation theorem in order to save computational effort, while the vorticity transport equation is

used when the baroclinic source term is present. Thus, the vortex sretching is implicitly taken into

account in the first case, while direct evaluation of the vorticity stretching and baroclinic source

terms is performed in the second.

Starting from equal "small-amplitude" two- and three-dimensional perturbations, the

evolution of the vorticity layer first exhibits a 2D regime which is characterized by the growth and

roll-up of the Kelvin-Helmholtz mode. Following this stage, 3D perturbations are rapidly

amplified. In all cases, and consistent with previous results, two types of 3D instability are

observed: an instability in the braids which leads to the formation of streamwise vortex rods and

scalar mushroom structures, and a core instability which causes an uneven deformation of the

spanwise eddies. The instability in the braids is associated with the severe stretching of the vortex

lines whose extension in the streamwise direction exceeds the separation distance between

neighboring spanwise eddies. The streamwise vortex rods are continuously wrapped around the

deformed spanwise cores leading to the intensification of the streamwise and spanwise components

of vorticity and to the generation of complex vortex structures. While the amplitude of instability

of the spanwise eddies does not reach such large values, it is still found to play an important role in

the evolution of the flowfield.

A detailed visualization of the vorticity and scalar fields and of the motion of material

surfaces was performed. The study focuses on the manifestation of 3D instabilities in vorticity

layers. The 3D instability in a vorticity layer with initially symmetric vorticity and scalar profiles

exhibits asytmnetric vorticity and scalar distributions at different spanwise locations. These forms

of asymmetry, which reverse themselves every one-half spanwise periodicity length, are linked to

the development of the braids and translative instabilities. Similar entrainment currents are

observed in a uniform-density asymmetric vorticity layer, where the asymmetry of the flowfield

leads to a preferential entrainment of irrotational fluid from the stream initially having higher

spanwise vorticity values. In this case, the effect of the asymmetric vorticity distribution combines

with that of the 3D instability, whose development is not significantly altered from the previous

case, resulting in a net departure from a unity entrainment ratio. The variable-density layer is
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identified by a finite convective speed of the eddies in the direction of the high-density fluid stream

and by an asymmetric entrainment pattern favoring the low-density stream. Baroclinic torques

affect the development of the 3D modes via uneven intensification or weakening of the streamnwise
vorticity.

Special attention was paid to the evolution of the unstable modes, and on their roles in
reorganizing the flowfield. We were thus content to observe unstable modes given by a single
spanwise wavelength, which was chosen close to the most amplified mode of the linear stability
theory. We leave to a subsequent study, the task of trying to determine the charateristics of the
processes which lead to the wavelength selection of the 3D modes. Moreover, we have restricted

our study to the formation and maturation of the primary 3D structures. We have thus omitted the
pairing interactions between these structures and their role in the mixing transition and growth of

the layer. These computations are currently considered.

32



ACKNOWLEDGEEMENT

This work is supported by the Air Force Office of Scientific Research Grant AFOSR 84-0356, the
National Scicam Foundation Grant CBT-8709465, and the Department of Energy Grant DE-
FG04-87ALA4875. Computer support is provided by the John von Neumann National
Supercoiputer Center.

33



REFERENCES

Ashurst, W.T. & Meiburg, E. 1988. J. Fluid Mech. 189, 87.

Batchelor, G.K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.

Beale, J.T. 1986. Math. Comput. 46, 401.

Beale, J.T. & Majda, A. 1982a. Math. Comput. 39, 1.

Beale, J.T. & Majda, A. 1982b. Math. Comput. 39, 29.

Beale, J.T. & Majda, A. 1985. J. Comput. Phys. 58, 188.

Bernal, L.P., The coherent structure of turbulent mixing layers, Ph.D. Thesis, California Institute
of Technology, 1981.

Bernal, L.P. & Roshko, A. 1986. J. Fluid Mech. 170, 499.

Breidenthal, R. 1980. Phys. Fluids 23, 1929.

Breidenthal, R. 1981. J. Fluid Mech. 109, 1.

Browand, F.K. & Troutt, T.R. 1980. J. Fluid Mech. 97, 771.

Brown, G.L. & Roshko, A. 1974. J. Fluid Mech. 64, 775.

Chorin, A.J. 1973. J. Fluid Mech. 57, 785.

Corcos, G.M. & Lin, S.J. 1984. J. Fluid Mech. 139, 67.

Crow, S.C. & Champagne, F.H. 1970. J. Fluid Mech. 48, 547.

Dimotakis, P.E. 1986. A/AA J. 24, 1791.

Dimotakis, P.E., 1989. "Tuwtblent free shear layer mixing," AIAA Paper 89-0262.

Ghoniem, A.F., Heidarinejad, G. & Krishnan, A. 1988. J. Comput. Phys. 79, 135.

Ghoniem, A.F. & Krishnan, A. 1988. In Twenty-Second Symposium (International) on
Combustion, The Combustion Institute, 665.

Greengard, C. 1986. Math. Comput. 47, 387.

Grinstein, F.F., Hussain, F. & Oran, E.S. 1989. "A numerical study of mixing control in
spatially evolving shear flows," AIAA Paper 89-0977.

Ho, C.-H. & Huerre, P. 1984. Ann. Rev. Fluid Mech. 16, 365.

Hussain, A.K.M.F. 1986. "Coherent structures and turbulence," J. Fluid Mech. 173, 303.

Inoue, O. 1989. AIAA J. 27, 1517.

34



Jimenez, J. 1983. J. Fluid Mech. 132, 319.

Jimenez, J., Cogollos, M. & Bernal, LP. 1985. J. Fluid Mech. 152, 125.

Koochesfahani, M.M. & Frielr, C.E. 1989. AIAA J. 27, 1735.

Konrad, J.H., An experimental investigaton of mixing in two-dimensional turbulent shear flows
with applicaions to diffusion-limited chemical reactions, Ph.D. Thesis, California Institute of
Technology, 1976.

Koop, C.G. & Browand, F.K. 1979. J. Fluid Mech. 93, 135.

Knio, O.M. & Ghoniem, A.F. 1988. "On the fonnaion of streamwiae vorticity in turulent shear
flows," AIAA Paper 88-0728.

Knio, O.M. & Ghoniem, A.F. 1990. J. Conput. Phys. 86,75.

Knio, O.M. & Ghoniem, A.F. 1991. J. Comput. Phys. 97, 172.

Knio, O.M. & Ghoniem, A.F. 1992. A/AA J. 30,105.

Krishnan, A. 1989. Numerical study of vorticity-combustion interactions in shear flow, Ph.D.
Thesis, M.I.T.

Lasheras, J.C., Cho, J.S. & Maxworthy, T. 1986. J Fluid Mech. 172, 231.

Lasheras, J.C. & Choi, H. 1988. J. Fluid Mech. 189, 53.

Leonard, A. 1985. Ann. Rev. Fluid Mech. 17, 525.

Lin, S.J. & Corcos, G.M. 1984. J. Fluid Mech. 141, 139.

Lowery, P.S., Reynolds, W.C. & Mansour, N.N. 1987. AIAA Paper 87-0132.

Majda, A. & Sethian, L.A. 1987. Comb. Sci. Tech. 42, 185.

Maslowe, S.A. & Kelly, RE. 1971. J. Fluid Mech. 48, 405.

McMurtry, P.A, Riley, JJ. & Metcalfe, R.W. 1989. J. Fluid Mech. 199, 297.

Metcalfe, R.W., Orszag, S.A., Brachet, M.E., Menon, S. & Riley, L.. 1987. J. Fluid Mech.
184, 207.

Neu, J.C. 1984. J. Fluid Mech. 143, 253.

Pierrehumbert, R.T. & Widnall, S.E. 1982. J. Fluid Mech. 114, 59.

Rehm, R.G. & Baum, H.R. 1978. J. Res. N.B.. 83, 297.

Riley, L.L. & McMurtry, P.A. 1989. In Turbulent Reactive Flows, R. Bcrghi & S.N.B. Murthy,
eds., Springer-Verlag, 486.

Widnall, S.E. & Tsai, C.-Y. 1977. Proc. Roy. Soc. London A287, 273.

35



Winant, C.D. & Browand, F.K. 1974. J. Fluid Mech. 41, 327.

Wygnanski, I., Oster, D., Fiedler, H. & Dziomba, B. 1979. J. Fluid Mech. 93, 325.

36



FIGURE CAPTIONS

Figure 1. (a) Schematic representation of the shear layer, the coordinate axes, and the initial
vorticity and scalar distributions, showing the shape of the perturbation, and the initial location of
the vortex tubes. (b) Vorticity and velocity profiles for the symmetric and asymmetric layers
discussed in Sections 3.1 and 3.3 respectively.

Figure 2. Three-dimensional perspective view of the s = 0, initially lying in the plane z = 0. The
plots were generated from the point of view of an observer located at (48,24,48). x- is the
streamwise direction, y- the spanwise direction, and z- is the cross-stream directn.

Figure 3. Three-dimensional perspective view of the iso-scalar surface (a) initially lying in the
plane z = -1.32, (b) embedded in the middle layer and coinciding with the axis of the spanwise
core, and (c) embedded in the mkkile layer and located within the braids. The plots are generated
as in Figure 1.

Figure 4. Intersection of the Lagrangian mesh at t = 18.0 with the planes (a) y = 33, (b)y = 1.6,
(c) x = 6.6, and (d) x = 2.0. The intersection points are illustraed in tes of small circles whose
radius is 1/8 of the core radius of the transport elements.

Figure 5. Schematic illustration of the evolution of the scalar distribution in the streamwise plane
dividing the spanwise eddy core.

Figure 6. (a) Contours of constant spanwise vorticity, o, and (b) iso-scalar contours plotted in the
plane y = 33.

Figure 7. (a) Contours of constant spanwise vorticity, aý and (b) iso-scalar contours plotted in the
x-z plane y = 5.0.

Figure 8. (a) Contours of constant streamwise vorticity, o•, and (b) iso-scalar contours plotted in
the plane x = 6.6.

Figure 9. (a) Contours of constant streamwise vorticity, a&, and (b) iso-scalar contoursplotted in
the plane x = 2.0.

Figure 10. Evolution of the total streamwise vorticity, Jl/e dA, computed in the smreamwise plane

located at x = 6.6.

Figure 11. Schematic illustration of the eddy.

Figure 12. Evolution of the eddy size in two dimensions, S2D (v), and in three dimensions, S3D
(A), and S'3D (*).

Figure 13. Three-dimensional perspective view of the surface p' = 0, initially lying in the plane z
= 0 for the case of a variable-density shear layer. The plots were generated from the point of view
of an observer located at (48,24,48).

Figure 14. Intersection ofthe Lagrangian mesh at t = 16.0 with the planes (a) y = 33, (b) y = 1.6,
(c)x = 9.3, and (d) x = 2.0.
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Figure 15. Contours of spanwise vorticity, &o, (left) and density (right) plotted in the plane y =
3.3.

Figure 16. Contours of spanwise vorticity, oy, (left) and density (right) plotted in the plane y =
5.0.

Figure 17. Contours of streamwise vorticity, (ox, (left) and density (right) plotted at t = 12.0, and
16.0, in the planes x = 8.6, and x = 93 respectively.

Figure 18. Contours of streamwise vorticity, ft, (left) and density (right) plotted in the plane x =
2.0.

Figure 19. Contours of the spanwise component of the baroclinic torque, ry, plotted in the plane
(a)y = 33 and (b) y = 5.0.

Figure 20. Contours of the streamwise component of the baroclinic torque, rx, plotted at t = 8.0
and 16.0, in y-z planes given by (a) x = 8.0 and 93; and (b) x = 2.0.

Figure 21. Three-dimensional perspective view of the surface s = 0, initially lying in the plane z =
0 for the shear layer with an initially asymmetric vorticity. The plots were generated from the point
of view of an observer located at (48,24,48).

Figure 22. Intersection of the Lagrangian mesh at t = 16.0 with the planes defined by (a) y = 3 3,
(b) y = 1.6, (c) x = 6.6, and (d) x = 2.0.

Figure 23. Spanwise vorticity, woy, (left) and scalar contours (right) plotted in the plane y = 33.

Figure 24. Spanwise vorticity, oa, (left) and scalar contours (right) plotted in the plane y = 5.0..

Figure 25. Streamwise vorticity, fo, (left) and scalar contours (right) plotted in the plane x = 6.6.

Figure 26. Streamwise vorticity, ft, (left) and scalar contours (right) plotted in the plane x = 2.0.
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ABSTRACT

The three-dimensional transport element method is extended to solve the

conservation equations for reacting flow. The numerical scheme belongs to an

adaptive, Lagrangian class of field methods in which computational effort is

concentrated in zones of finite vorticity and chemical reaction. The method

is based on accurate discretization of vorticity and species concentrations

among a number of spherically-symmetric transport elements, and the advection

of these elements along particle trajectories. We use the low Mach number

approximation of combustion in open domains, and restrict our attention to the

case of diffusion flames with no heat release. A single-step, second-order,

infinite-rate kinetics chemical reaction model is employed.

The scheme is applied to study the effect of flow-induced instabilities

on the reaction zone and product distribution in a temporal shear layer.

Results are obtained in the high Peclet number regime for a wide range of

Damkohler numbers. Changes in the reaction field are related to either the

entrainment or the strain field associated with the saturation of the

instabilities. With increasing Damkohler number, the structure of the

reaction region changes from a distributed zone embedded within spanwise and

streamwise vortices, to a thin sheet surrounding their cores. However, the

product concentration always exhibits strong similarity to the vorticity

distribution, realizing its highest values in zones of high vorticity and

falling rapidly in regions where the vorticity magnitude is small. Variation

of the Peclet number yields minor changes in the product distribution and in

the reaction zone structure, but strongly affects product formation rates.



I INTRODUCTION

The subject of this work is the construction of Lagrangian field methods

for the numerical simulation of three-dimensional, high Reynolds number,

reacting shear flow. In this fluid flow regime, vorticity is confined to a

small well-defined fraction of the flow field making vortex methods, in which

computational elements are used to cover the support of vorticity, a natural

candidate for the solution of the momentum equation. In previous effort,1- 3 a

modified vortex element scheme was constructed, and applied to study the

motion of unconfined, inviscid vortex rings. The study revealed the need for

(1) a careful representation of the vorticity field at the initial state, and

(2) an accurate implementation of numerical schemes as time evolves. These

requirements are especially critical in three-dimensional flows where several

forms of rapidly-growing instabilities of complex shapes are present. To

satisfy these requirements, and to accommodate the solution of scalar

conservation equations, an adaptive class of Lagrangian field methods, called

transport element methods, was constructed. Numerical study of several forms

of these methods, which focused on the solution of the inviscid scalar

transport equation, was successfully conducted in Refs. 4,5.

While the ultimate goal of this work consists of the construction of

numerical methods for the solution of the compressible, turbulent combustion

equations, in this study, we limit our attention to the low Mach number,

isothermal flow limit. In the presence of an exothermic reaction, analysis of

burning rates is complicated by the expansion field and the baroclinic

vorticity generation spawned by the heat release, and the burning rates

exhibit higher sensitivity to the strain field. In a three-dimensional flow,

these mechanisms are further compounded by vorticity stretching and individual

effects become hard to isolate. By virtue of our simplifying assumptions,



computed results will allow us to focus on studying the defcrmatlcn cf the

diffusion flame by a known flow field.

The numerical scheme is obtained by modifying the transport element

method discussed in Ref. 5. It is based on the discretization of both

vorticity and species concentrations into a number of transport elements of

finite, spherically:-symmetric overlapping cores. Transport elements are

distributed over entire material surfaces whose motion is tracked in a

Lagrangian frame of reference. Vorticity associated with the elements changes

by stretching and tilting, while species concentrations are updated by

numerically accounting for diffusion-reaction terms. The rotational velocity

field is computed by a discrete, desingularized Biot-Savart convolution over

the field of the elements. Boundary conditions are satisfied by adding the

contribution of the appropriate image system of the transport elements.

The method is applied to study the evolution of chemically-reacting

temporal shear layers. The flow field is selected because of (1) its

practical importance in a large class of combustion problems, and (2) the

existence of experimental6-10 and analyticalI1-12 results which focus on the

three-dimensional behavior of the flow. However, numerical studies of scalar

entrainment, mixing and chemical reaction in three-dimensional layers remain
scarce. Thus, the method is used to study the effect of vorticity-

induced entrainment and strain on the evolution of diffusion flames. Computed

results are obtained for a wide range of Damkohler numbers, in order to study

its effect on the structure of the reaction zone and product distribution.

II FORMULATICN AND NUMERICAL SCHEME

II.1 FORMULATION AND GOVERNING EQUATIONS



We consider a three-dimensional, chemically-reacting flow in the limits

of infinite Reynolds number, vanishingly small Mach number and heat release.

The reaction is described by a single-step, second-order, infinite-rate

kinetics, F (fuel) + 0 (oxidizer) 4 P (products). The reactants and products

are assumed to behave as perfect gases with equal molecular weights, equal and

constant physical properties. Under these assumptions, the vorticity form of

the momentum equation, the continuity, and species conservation equations,

normalized with respect to the appropriate combination of velocity, U0,

length, L0 , and density, p0 , scales, reduce to:

DwW= (1)
Dt

V-u- 0 (2)

Ds i . 1 si _ W (3)Dt Pe Le

In Eqs. (M)-(0), u - (u,v,w) denotes the velocity vector in a right-handed

Cartesian system x - (x,y,z), w - Vxu is vorticity, t is time, D/Dt - 3/at +

u.V is the material derivative, V - (a/ax,a/ay,a/az) is the gradient operator,

V2 is the Laplace operator, Pe - UI/(aLo) is the Peclet number, Le - a/O is

the Lewis number, while a and 1 denote, respectively, the thermal and mass

diffusivities. The model requires the transport of two scalars, si i-1,2,

where sI - c0 denotes the oxidizer concentration, while s2 - cF represents the

fuel concentration. The product distribution is given by cp - 1 - cO - cF,

and chemical production term W - Da c0  cF where Da is the Damkohler number.

Equations (1)-(3) are obtained by simplifying the low Mach number equations

for combustion for vanishingly small heat release. The assumption of no heat

release implies that both temperature and density remain constant, so that

both baroclinic vorticity generation and volumetric expansion effects cancel

in the vorticity transport equation. The model ignores viscous effects, since



viscosity only affects the motion of the vorticity field -well beyond the

mixing transition, a mechanism which is not in the scope of the present

computations. Mass diffusion effects are retained, because they govern the
17

mixing and chemical reaction processes.

11.2 NUMERICAL SCHEME

The numerical scheme used in the solution of the governing equations is

obtained by extension of the methods analyzed in previous work, 5 and hence is

summarized in the following. Its construction starts with the discretization

of the vorticity field, (o~x), on a three-dimensional mesh:

N
W(x,O) - E Wi.(0) dVi f (x-Xi) (4)

i-1

where N is the total number of vortex elements, Xi, dV., and w i denote the

center, volume, and vorticity of element i, respectively. The vorticity

associated with each element is smoothed in a small neighborhood of Xi

according to a spherical core function, f6 ' with core radius, 6, where f 6 (r) -

(1/83) f(r/8). A third-order Gaussian core function,

3 r3
f(r) - • e- (5)

is adopted.18-19 Note that f decays rapidly for r > 6 so that & represents

the radius of the sphere where vorticity is concentrated.

The vortex elements are initialized by employing entire material surfaces

distributed within the support of vorticity. The surfaces are discretized

into rectangular "transport" elements which generalize the notion of the

vortex vector elements. In this representation, a transport element is

specified by the vector (44x,~,where the Lagrangian coordinates 4,1
tra and o are used to define a "rectangular area around its center. The

transport elements are selected such that the sides of adjacent rectangles



coincide to form a mesh which continuously describes an entire material

surface. This construction resembles, but differs from that proposed by

Agishtein & Migdal who used triangular elements to describe a singular vortex

sheet. 20

Within each element, we use a finite element description of the surface

using linear interpolation functions. 2 1  The motion of the centers of the

elements, Xi, is approximated by:

Xi (t) - ((t)) + 4. (t) + 4. t) + X~j- t)) (6)

where the X(t), j - 1,2,3,4, denote the instantaneous coordinate of the

material particles whose Lagrangian coordinates coincide with the vertices of

the initial mesh. This representation accommodates the integration of the

vorticity transport equation, which is necessary in general flow situations, 5

but retains the advantages of vortex element schemes which relate the

evolution of the vorticity field to the deformation of vortex lines. 2 2 2 6

Under the assumptions made above, the latter approach is preferred, since it

results in considerable computational savings as direct evaluation of the

gradient of the flow map is avoided. This is done by associating with each

element a circulation ri and requiring that the pair of opposing sides of the

rectangles, (X,i) and (X4 ,X-), align with the local vorticity vector. The

quantity wi(t)dVi is thus replaced by ris)x(t), where the evolution of the

material length 6Xi(t) is given by:

According to Kelvin's theorem, ri remains constant along a particle path,

while Helmholtz' theorem is used to relate the evolution of wi(t) to that of

6xi(t) as follows:

(t) M I 6x(t) (8)
"16Xil



The v2elocity field, induced by the vorticity distribution in an infinite

domain, is given by the discrete, desingularized Biot-Savart law:

1 N (x-xi) x 6Xi (1 r).
U F - -- K(-~-u W [ . r 3 ( 9 )i-1 l x-Xi I

where K(r) 4n 05r f.(r') r' 2 dr' - 1-exp(-r 3 ), and ri - Ix-XiI. The velocity

field thus obtained is used in conjunction with a second-order predictor-

corrector scheme to update the particle positions X-(t).

Analysis of particle methods, 2 2 - 2 6  and numerical evidence 5 indicate that

severe deformation of the Lagrangian mesh under the action of the strain field

causes a deterioration in the discretization accuracy. To overcome this

difficulty, the remeshing algorithm suggested in Ref. 5 is utilized. It

effectively amounts to the redistribution of the elements along a vortex tube

and the splitting of the vortex tubes along material surfaces, whenever the

length of the elements exceeds the core radius. This allows us to capture

severe distortions of the flow without losing accuracy.

The numerical solution of Eq. (3) is performed in a similar way as that

of the vorticity field. The concentration fields are discretized among the

transport elements, which now carry, along with vorticity, discrete local

values of sI and s 2 . We let:

N
s(x,t) - Z si(t) dvi fS(x-)q(t)) (10)

i-i

Next, we adopt the discrete approximation of the Laplacian operator:

2 N

)2 k-i k - ) V dkgs(xk(t) - xj(t)) (1
,j) - 6nk .1 (sk - sj) k t 5t)<

where

g(r) -- d ,1 - g (12),
T T- 9 .3g(-1) 12)



and f is the core smoothing function previously defined.2- 3 1 This scheme :s
32

preferred over random walk methods, 2whose implementation is cumbersome in

conjunction with the transport of connected surfaces, and over core spreading

techniques,33 which no longer yield simple evolution equations for the core

radii. The evolution of the scalar concentration fields is found by

numerically integrating:

Se eB(si) +w(13)d 1"-6- .e yýLe--" B] W(3

using the same method employed in tracking the particle positions.

Iir FLOW GEOMETRY AND INITIAL CONDITIONS

We assume a vorticity layer of finite thickness, periodic in its

streamwise x-direction and spanwise y-direction, and unconfined in the cross-

stream z-direction. The thickness of the layer is expressed by 2a where a is

the standard deviation of the second-order Gaussian curve which describes the

physical vorticity distribution within the layer at t- 0. Letting 2(x) denote

this initial condition, we have: y (x) - 2/(a /iI)exp(-z 2/ 2), 9 x (x) - 9z(x) -

0. The corresponding velocity distribution U(x) at t - 0 is given by: V(x) -

W(x) - 0, and U(x) - erf(z/a), erf being the error function. The vorticity

layer thus admits a streamwise velocity difference aU - 2. The periodicity

length in the x-direction, X x - 13.2 a, corresponds to the wavelength of the

two-dimensional most unstable mode,I1 while X - Xx/2 is selected close to the

wavelength of the most amplified three-dimensional mode. 1 2 The initial fuel

and oxidizer concentrations follow error-function type profiles, c0 (t-0) -

erf(z/*), cF(t-0) - l-erf(z/o), so that cp(t-0) - 0. Thus, the top stream and

bottom streams consist respectively of oxidizer and fuel, and the initial
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thickness of the vorticity layer matches the "mixed" zone, or the zone cf

finite chemical activity.

The layer is initially discretized among elements distributed on a grid

of 20x14x5 points along the x-, y-, and z-directions respectively.

Furthermore, a is chosen as a reference length scale so that ax-az-0.66, and

Ay-0.471. The top stream velocity, U(z- -), is selected as a reference

velocity scale, the time step 6t - 0.1, and S - 0.89. The circulations of the

elements are found by matching discretized and assuried vorticity values at the
1 s2ar

centers of the elements, while the concentration fields, s1 and s', are
1

initialized by associating with the transport elements, the values realized by

the corresponding "physical" distribution at their centers. Normal, periodic

boundary conditions are satisfied by adding the contribution of the image

system of the transport elements, using the procedure detailed in Ref. 5.

The layer is perturbed at t - 0 using two sinewaves of the same amplitude

in the streamwise and spanwise directions, as expressed by the transformation

z.i -+ zi + esin(2nxi/X ) + csin(2nyi/Xy), c - 0.02 X. Computations of the non-

reacting flow field are carried until t - 18.0 to observe the growth of two

and three-dimensional instabilities, while those of the reacting flow field

are stopped at t - 16.0, i.e. when mature vortical structures are formed.

Results are obtained for a total of 21 cases, assuming infinite Reynolds

number, unit Lewis number and varying the Damkohler and Peclet numbers. We

consider seven values of the Damkohler number, Da - 0.1, 0.2, 0.4, 1., 2.5,

5.0, and 10.0, and three values of the Peclet number, Pe - 250, 500, and 1000.

In the following, we start with a summary of the evolution of the flow and

vorticity fields, and then discuss the influence of the vortical structures on

the shape of the reaction zone and the product concentration distribution.

IV FLOW FIELD EVOLUTIW



The development of the shear layer, as represented by the evoluticn cf

the material surfaces where the vorticity in non-zero (the flow is inviscid),

and the vorticity field on different spanwise and streamwise locations are

examined. Similar flow configurations were analyzed by the present authors in

F-.. 5, studied by Ashurst and Meiburg who focused on the dynamics of vortex

filaments in both symmetric and asymmetric layers,34 and by Metcalfe et al.

who used a spectral scheme to examine the evolution of individual instability

modes.35 Hence, the main features of the flow are briefly discussed in the

following.

Figure 1 aepicts three-dimensional perspective views of the material

surface initially located at z - 0, at t - 12.0 and 16.0. This represents the

middle surface within the shear layer where most of the vorticity is

concentrated. The plots are generated from the point of view of an observer

located at (48,24,48).

At t - 12.0, the rollup of the vorticity layer produces a well-defined

spanwise eddy core. The saturation of the instability is associated with the

redistribution of the vorticity field and results in the creation of a core

where most of the spanwise vorticity is concentrated, and braids which are

constant'v strained under the influence of the spanwise vortex cores. The

amplitude of the spanwise perturbation is significantly amplified along the

core, an indication of the evolution of the translative instability. 1 2 This

non-uniform axial displacement of the core is accompanied by an out-of phase

deformation of the braids region under the influence of the generated

streamwise vorticity.

At t -16.0, the motion becomes highly three-dimensional as differences

along various spanwise stations become important and depart from the shape of

the imposed sinewave perturbation. The stretching of the braids, which are



"anchored" along the boundaries of the domain and pulled towards the core,

leads to the generation and intensification of streamwise vorticity. This

results in the saturation of the streamwise vorticity into vortex rods which

extend throughout the braids and are wrapped around the spanwise core. The

presence of streamwise vortex rods is inferred from the spinning of material

surfaces about streamwise axes which are located at the spanwise mid-section

and boundaries of the domain.

The Lagrangian description of the flow is completed by considering two-

dimensional cross-sections of the computational surfaces. Figure 2 shows

cross-sections through all the material surfaces at t - 18.0. We consider

spanwise sections along two-dimensional planes specified by (a) y - 3.3; and

(b) y - 1.6, and streamwise sections through the core and braid regions, in

the planes located at (c) x - 6.6; and (d) x = 2.0. Circles are drawn to mark

the intersection points with the transport elements. The radius of the

circles is smaller than the core radii of the smoothing functions.

The spanwise cross-sections illustrate the effect of the translative

instability which causes a non-uniform axial deformation of the spanwise

vorticity core. The eddy core eddy is pushed upwards and in the direction of

the top stream in the "left" half of the domain, 0 < y < 3.3, while it suffers

an antisynmmetric deformation in the other half. The core region at most

spanwise cross-sections loses its synmetry, as computational elements migrate

in the direction opposite to that of the core translation. The intersection

of material surfaces with the plane y - 3.3, shows that the braids thicken

significantly at this spanwise location and that they entrain irrotational

fluid from both free streams. This can be verified by simultaneously

examining Fig. 2c which shows the wrapping of the mushrooms around the core of

the eddy. The entrainment of mushrooms, which are generated in the braids,

towards the core region leads to the formation of a double structure. Dark



areas which appear along the core region correspond to the intersection of the

streamwise vortex rods with the plane of the figure.

Figures 3-6 show constant spanwise vorticity contours, plotted in two

spanwise sections, y - 3.3 and 1.6, and streamwise vorticity contours in the

streamwise sections x = 6.6 and 2.0, respectively. Contours are generated at

times t - 12.0 and 16.0. At earlier times, the vorticity field exhibits small

deviations from that obtained in a two-dimensional flow, and hence is not

depicted. The growth of three-dimensional perturbations is suppressed during

the initial stages of the Kelvin-Helmholtz instability and the spanwise

vorticity remains essentially uniform across the layer.5,34,35 Weak

streamwise structures are generated by local tilting of the vortex lines into

the streamwise direction, but do not significantly affect the evolution of the

flow. This mechanism leads to the creation of zones of alternating streamwise

vorticity whose locations and signs follow the shape of sinewave perturbation.

Following the rollup of the spanwise vorticity the flow field undergoes

a rapid transition to three-dimensional motion. In the braids region, a

violent increase in the amount of streamwise vorticity is observed. The

streamwise structure almost doubles in strength in half the time span it took

to generate it. This behavior is expected since the creation of the large

spanwise eddy results in larger strain rates in the neighborhood of the

stagnation "lines" which anchor the braids.

In the meantime, the streamwise vorticity distribution along the core

becomes distinguished by the presence of a top and a bottom row of counter-

rotating streamwise vortices. These rows are separated by a third, middle

row, which is generated as a result of the growth of perturbations along the

core itself by the mechanism of the translative instability, and is 1800 out

of phase with the other two. 3 4  The growth of perturbations along the core

leads to a more dramatic increase of the streamwise vorticity, as the middle
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row of vortice3 becomes stronger than the top and bottom rows. The generati:n

of strong streamwise structures in the core region is not associated with

large amplitude deformation in the streamwise direction. This may be

explained by noting that the rollup of the layer, which precedes the three-

dimensional motion, forces the migration of the spanwise vorticity from the

thinning braids into the core region. Also note that the intensification of

the streamwise vortices, entrained from the braids into the cores (the top and

bottom rows), lags that observed in the braids. Thus, streamwise vorticity

associated with the vortex rods is generated in the braids and then strained

towards the cores.

The transition to three-dimensional motion, in its initial stage, does

not lead to significant qualitative modification of the structure of the layer

as perceived in two-dimensional spanwise cuts. The spanwise vorticity

distribution still bears a striking resemblance to that observed in a a two-

dimensional flow. However, we note two minor differences: (i) the vortex

core, while essentially governed by the dynamics uf the primary instability,

suffers a reduction of its cross-section; and (ii) the vorticity distribution

loses its symmetry in the plane located at y - 1.6, but remains synmetric at

the spanwise midsection of the domain, y = 3.3. The first effect is a

consequence of the growth of the three-dimensional perturbation on the

spanwise core which necessitates a stretch component along its axis. The loss

of symmetry, which becomes more obvious in the later stages of development of

the three-dimensional instability, is discussed below.

The non-linear stages of evolution of the three-dimensional instability

are examined first in the streamwise planes of the shear layer, Figs. 5 and 6.

The stretching of the vorticity lines along the braids leads to the maturation

of the elongated vortices into round concentrated cores. 36-37 The flow field

induced by the vortex rods causes further deformation of the material surfaces
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resembles, but is different from, the two-dimensional pairing of vortices.

This type of distribution should be contrasted with that obtained in unstable

vortex rings which displays similar features at certain azimuthal cross-

sections.
2

V REACTING SHEAR LAYER

We turn our attention to the study of diffusion flames in three-

dimensional vorticity layers. Since heat release effects are neglected,

temperature and density remain constant, and the reaction does not affect the

flow field. Results are used to analyze the effect of vorticity-iniuced

entrainment and strain on the reaction zone, product distribution, and burning

rates. We start with a reacting layer at low Damkohler number and low

diffusion, Da - 0.1 and Pe - 1000, then at high Damkohler number and low

diffusion, Da - 10 and Pe - 1000.

Results are shown in terms of shaded contours of product concentration,

and product formation rate, W. Product concentration is shown in terms of six

different shades of gray, mapped to equal size intervals between 0 and 1. The

product formation rates are first normalized by the maximum value achieved in

the plane where the figure is generated, before the contours are drawn. In

these plots, dark areas highlight the zone of highest chemical activity, and

must not be used as indication of the actual formation rates.

V.1 REACTING LAYER AT LCK DAMKOHLER NUMBER

Figures 7-10 show product concentration and reaction rate contours in the

planes y - 3.3, y - 1.6, x - 6.6, and x - 2.0, respectively, generated at t -

12.0 and 16.0. In each figure, product concentration and reaction rate

contours are shown side-by-side. At earlier stages, t < 8.0, examination of



the reaction field (not shown here) exhibits small differences from those Cne

obtains in a two-dimensional field. 39 - 4 0  The products of reaction and the

zone of highest chemical activity surround the region of highest vorticity.

Three-dimensional effects are weak in this stage, and can only be detected

along the streamwise sections, which show very small spanwise undulations of

the layer.

With the intensification of the streamwise vortices in the braids and the

amplification of the translative instability in the cores, significant

deviations from two-dimensional behavior are observed. At y - 3.3, the

streamwise vortex rods which start to form at the boundaries of the domain

enlarge the product concentration layer at this location. As shown in Fig.

7b, enlargement of the layer is a consequence of burning enhancement,

associated with the rollup of the surfaces around the streamwise vortices.

This is contrary to the result of two-dimensional simulations in which the

strain field of the spanwise vortex cores leads to continuous thinning of the

product layer embedded within (or surrounding) the braids. 4 0

However, the thinning of- the braids and the entrainment of products

towards the spanwise vortex core are still observed in the spanwise section y

- 1.6, which does not intersect any streamwise vortex rod. Meanwhile, the

products of reaction undergo a displacement similar to that of the vorticity

core (Fig. 8a). The translation of the core towards the top stream and the

migration of its geometric center in the opposite direction destroy the

symmetry of the product concentration. The asymmetric mixing patterns

associated with this mechanism also affect the reaction rate distribution

(Fig. 8b), since the reaction rate, which depends strongly on the composition

of the reacting mixture, drops rapidly if either oxidizer or fuel become

deficient. This description persists survives the restructuring of the

vorticity core by the maturation of three-dimensional instabilities, so that
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the reaction rate and product concentration distributions at this section are

in qualitative agreement with the results of two-dimensional simulations. 4 0

The difference between the two sections is directly related to the

streamwise vorticity. The presence of streamwise vort-x rods leads to mixing

and combustion enhancement, a mechanism which resists the "negative" effects

of the underlying two-dimensional strain field. Not only do the streamwise

vortex rods lead to mixing enhancement via entrainment, but also maintain high

product concentration near their axes (Fig. 7a).

In the streamwise sections, the product concentration changes from a wavy

layer across the span, into a highly concentrated distribution embedded within

the cores of the streamwise vortices. The streamwise vortex rods generate

mushroom structures in the braids. With the intensification of the streamwise

vorticity in concentrated cores, At late stages, t - 16.0, the field of the

vortices causes severe thinning of the "braids" joining neighboring rods which

almost become devoid of products. These transverse entrainment currents are

best appreciated by simultaneously examining Figs. 10a and 10b, which indicate

that the depletion of products occurs despite high reaction rates in regions

separating the streamwise eddies. Thus, the strain and entrainment fields

tend to reshape the structure of the product concentration such that high

product concentration coincides with high concentration of vorticity, and

falls rapidly as one moves into zones of small vorticity.

The effect of the translation of the spanwise core on the product and

reaction rate distributions is inspected in Fig. 9. At early stages, t < 8.0,

combustion occurs in an almost uniform layer across the span. Initial growth

of the translative instability causes a wavy deformation of the reaction zone

and of the region of high product concentration. The distribution of the

latter is complicated by the entrainment of the braids, which trap layers of

unburnt fluid on the top and bottom sides of the deformed core. At later
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stages, the maturation of the three-dimensional instabilities yields

distributions of even higher complexity.

The entrainment of mushroom structures formed in the braids towards the

cores remains easy to detect. Within these structures, zones of high product

coincide with the axes of the corresponding vortex rods, while, as expected,

reaction rates remain high across the span. The deformation associated with

the maturation of the translative instability is harder to analyze, as the

core of vorticity to cross the plane of the figure. The streamwise vortices

induce a spinning motion which enhances the chemical reaction (Fig. 9b) so

that their axes become zones of high product concentration. The motion

induced by these vortices, visualized by the redistribution of the reaction

zone, resembles the deformation which accompanies the formation of the vortex

rods and can be predicted by the streamwise vorticity distribution shown in

Fig. 5. Interpretation of the product and reaction distributions shown in

Fig. 9 requires examination of several sections simultaneously. Such an

exercise might be conducted by comprring the distributions of Figs. 9 and 8,

with the motion of material particles shown in Figs. 2c and 2b. The

comparison yields a clear illustration of the motion of the core of vorticity,

and of the transverse diffusion fluxes associated with the growth of three-

dimensional instabilities.

V.2 REACTING LAYER AT HIGH DAMKOHLER NUMBER

We now consider the evolution of the reaction field for a three-

dimensional layer at high Damkohler and Peclet numbers, Da - 10, and Pe -

1000. As in the previous section, the analysis is conducted by plotting the

product concentration and normalized reaction rate contours in the spanwise

sections y - 3.3 and 1.6 and the streaiwise sections x - 6.6 and x - 2.0, in



Figs. 11-14 respectively. In each figure, snapshots of the correspcndinq

variables are shown at t = 12.0 and 16.0.

Compariscn of Figs 1.a, 12a, 13a and 14a, with their respective

counterparts, Figs. 7a, 8a, 9a, and 10a, reveals that the increase in the

Damkohler number does not change the structure of the product distribution.

Despite high reaction rates, products are reorganized by the flow in -uch a

way as to force a correspondence between zones of high vorticity and high

product concentration. This similarity is in agreement with results of two-

dimensional computations. 39-40

At low Damkohler number, a small reaction rate confines the reaction zone

to the initial well-mixed region. At high Damkohler number, the reaction zone

undergoes a change as the flow evolves, from a region inside the large

cores/rods to a thin zone around their outer boundaries. This is expected

since fast reaction rates lead to "complete" combustion in well-mixed zones

and therefore to the migration of the reaction zone to reactants-rich regions.

As shown in Fig. llb, the product concentration reaches values close to

one inside the core of the spanwise eddy. Similarly, the section located at y

- 1.6, shown in Fig. 12b, indicates that the reaction rate drops first at the

center of the eddy. At late stages, the reaction zone migrates towards the

outer edges of the eddy core. Burning takes place in thin regions located

around the outer edges of the core of vorticity; while little or no reaction

occurs within the core. A similar redistribution of the reaction zone is

observed in the spanwise plane y - 3.3. However, this effect is less

pronounced near the spanwise core, while the braids continue to support the

chemical reaction. The difference between the two sections is related to the

presence of streamwise vortices whose stirring action results in enhanced

transverse diffusion fluxes.



The mechanisms by which the streamwise vortices enhance the rate cf

burning differ between the core and braid regions. Within the core,

streamwise vortices, generated by the deformation of the core itself, cause a

spinning motion that is weakly affected by the underlying two-dimensional

flow. This results in a limited enhancement in burning rates within a large,

product-dominated zone. On the other hand, despite the presence of streamwise

vortex rods within the braids, the strain field associated with the underlying

two-dimensional flow prevents the formation of a thick product region. Hence,

high product concentrations and high reaction rates coexist in this region.

The streamwise sections of Figs. 13b and 14b provide another view of the

evolution of the reaction zone in the spanwise direction. At t - 12.0, the

deformation of the product interfaces is dictated by the growth of three-

dimensional instabilities. Combustion occurs in two thin layers enclosing the

spanwise vorticity core, and in the braids which start to roll under the

action of the streamwise vortex rods. At later stages, the reaction becomes

confined to the core of the vortex rods and a thin layer trapped between the

braids and the core region. ' The region of lowest reaction rate, located

within the spanwise core, corresponds to a zone of small streamwise vorticity

separating neighboring vortices. On the other hand, cross-sections of the

braids shown in Fig. 14b confirm our earlier claim regarding the competing

influence of the streamwise vortex rods and of the two-dimensional strain

field. Despite the extreme thinning of the braids by the strain field of the

spanwise core, and the continuous entrainment of the products of reaction, the

braids support high reaction rates and high product concentration near the

axes of the vortex rods.

V.3 TOTAL MASS OF PRODUCTS



The evolution of the total mass of products formed, M(t) = f o cP dx =

o CPi dVi, is shown in Fig. 15 for all 21 cases considered. Figure 15

contains three plots, corresponding to (a) Pe - 1000, (b) Pe - 500, and (c) Pe

- 250, each showing changes in M(t) for seven values of the Damkohler number,

Da - 0.1, 0.2, 0.4, 1.0, 2.5, 5.0, and 10. Variations in the Peclet number

are found to induce minor changes in the product and reaction zone structures.

Thus, at high Peclet numbers, the latter are mainly governed by the convective

flow field. However, the reaction rates are strongly dependent on the amount

of mixing, and hence on the coefficients of mass diffusion.

At high values of the Damkohler number, the chemical reaction leads to an

almost ixmnediate and complete burning of the initial mixed region. Curves

corresponding to Da > 2.5 are characterized by a short and sharp initial

growth period, which does not depend on the Peclet number. This is expected

since, for fast chemistry, regions of mixed reactants burn immediately. An

abrupt transition to a controlled growth regime follows, indicating that a

diffusion-limited reaction is reached. 4 1  The burning rates in this regime

increase with decreasing Peclet numbers, as indicated by the slopes of the

corresponding M(t) curves at later stages between Figs 15a, 15b and 15c.

At low values of the Damkohler number, Da < 0.4, the chemical reaction is

too slow for such a transition to occur. The evolution of M(t) exhibits a

monotonic increase throughout the duration of the computations. As previously

mentioned, the reaction remains confined to the initial mixed region. This

observation is supported by noting that the mass of products formed at the end

of the computations at low Damkohler number is less than that reached at the

time of the transition to diffusion-limited regime in the high Damkohler

number computations. This explains the fact that, at late stages, the burning

rates at low Damkohler number are higher than those at high Damkohler number,
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and that :ains in the amount of products formed achieved by decreasing the

Peclet number are smaller when the Damkohler number is small.

VI CONCLUSIONS

in this work, the evolution of reacting shear layers are numerically

determined in the high Peclet number regime, for a wide range of Damkohler

numbers. Computed results show that the product distribution is shaped by the

convective field induced by spanwise and streamwise vortex structures which

form due to the growth of essential instability of the flow. The rollup of

spanwise vorticity leads to the creation of concentrated vortex cores, and

braids which join neighboring cores. Entrainment currents associated with

these structures force the migration of products from the braids towards the

cores, while their induced strain field causes a severe thinning of the braids

and of the reaction zone supported therein. However, streamwise vortices,

which are generated as a result of growth of three-dimensional instability and

are intensified by stretch, significantly affect the flow at later stages,

resulting in substantial deviation from the two-dimensional situation.

The maturation of the streamwise vortices into strong streamwise rods,

and the amplification of the translative instability are accompanied by

spanwise variations in the reacting field and the formation of mushroom

structures. Mixing and burning enhancement is achieved through the transverse

entrainment fluxes. The entrainment fluxes cause a reorganization of the

product distribution such that zones of high product concentration always

correspond to zones of high magnitude of vorticity. Thus, products tend to

migrate towards the core of the spanwise vortices and towards the axes of the

streamwise vortex rods.



While the product distribution is dictated by the flow, and Is

insensitive to variation of the Damkohler number, the structure of the

reaction :cne depends strongly on the latter. At low Damkohler number,

combustion occurs in distributed zones located within the cores of the

vortices, and is confined to the initial, well-mixed region. As the Damkohler

number increases, complete combustion is achieved within the cores of the

vortices, thus causing a migration of the reaction zone towards their outer

edges. The motion of the reaction zone towards regions of higher strain rates

result in a substantial change in its structure, as considerable thinning of

the latter is observed. Extension of the computations to study pairing among

several eddies and to accommodate high heat release, compressible flow models

with complex chemical reactions, is currently contemplated.
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FIGURE CAPTIONS

Figure 1. Three-dimensional perspective view of the material surface initially

lying in the plane z - 0, and carrying the highest spanwise vorticity. The

plots are generated at t - 12.0 and 16.0 from the point of view of an observer

located at (48,24,48). x- denotes the streamwise direction, y- the spanwise

direction, and z- is cross-stream direction. A constant-y plane is called a

spanwise section, while a constant-x is called a streamwise section.

Figure 2. Intersection of the Lagrangian mesh at t - 18.0 with the planes

defined by (a) y -3.3, (b) y - 1.6, (c) x - 6.6 and (d) x - 2.0. Results are

obtained using rectangular transport elements.

Figure 3. Contours of the spanwise vorticity, wy, shown in the x-z plane

located at y - 3.3. The plots are generated at t - 12.0 and 16.0. Dashed

lines are used to represent negative values.

Figure 4. Contours of the spanwise vorticity, wy, shown in the x-z plane

located at y - 1.6 at t - 12.0 and 16.0.

Figure 5. Contours of the streamwise vorticity, wx, shown in the y-z plane

located at x - 6.6 at t - 12.0 and 16.0.

Figure 6. Contours of the streamwise vorticity, wx, shown in the y-z plane

located at x - 2.0 at t - 12.0 and 16.0.

Figure 7. Contours of (a) product concentration and (b) reaction rate

generated in the x-z plane located at y - 3.3. The plots are generated at t =

12 1 and 16.0 for a reacting layer with Da - 0.1 and Pe - 1000.

Figure 8. Contours of (a) product concentration and (b) reaction rate

generated in the x-z plane located at y - 1.6. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 0.1 and Pe - 1000.
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Figure 9. Contours of (a) product concentration and (b) reaction rate

generated in the y-z plane located at x - 6.6. The plots are generated at t =

12.0 and 16.0 for a reacting layer with Da - 0.1 and Pe - 1000.

Figure 10. Contours of (a) product concentration and (b) reaction rate

generated in the y-z plane located at x - 2.0. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 0.1 and Pe - 1000.

Figure 11. Contours of (a) product concentration and (b) reaction rate

generated in the x-z plane located at y - 3.3. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 10 and Pe - 1000.

Figure 12. Contours of (a) product concentration and (b) reaction rate

generated in the x-z plane located at y - 1.6. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 10 and Pe - 1000.

Figure 13. Contours of (a) product concentration and (b) reaction rate

generated in the y-z plane located at x - 6.6. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 10 and Pe - 1000.

Figure 14. 7ontours of (a) product concentration and (b) reaction rate

generated in the y-z plane located at x - 2.0. The plots are generated at t -

12.0 and 16.0 for a reacting layer with Da - 10 and Pe - 1000.

Figure 15. Evolution of the total mass of products, M(t), for reacting shear

layers at (a) Pe - 1000, (b) Pe - 500, and (c) Pe - 250. In each plot, M(t)

is generated for Damkohler numbers Da - 0.1, 0.2, 0.4, 1, 2.5, 5, and 10.
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SIMULATION OF FLOW-COMBUSTION INTERACTIONS IN A SPATIALLY
DEVELOPING MIXING LAYER
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Cambridge, MA 02139
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ABSTRACT I. INTRODUCTION

The transport element method, a Lagrangian, grid-free Reacting shear flow at high Reynolds number is of
scheme based on the extension of the vortex method to fundamental importance to the physics of combustion and to a
reacting compressible flow at low Mach number, has been wide range of engineering applications. Due to the complexity
applied to simulate a spatially developing, reacting shear layer of the problem, numerical simulation has been recognized as
with unmixed reactants. The method employs computational an important tool in studying the different phenomena
elements which move along particle trajectories and transport governing turbulent reacting flows [1,2]. To perform these
vorticity and scalar gradients. In the case of a reacting flow, simulations accurately, we have developed a Lagrangian-
vorticity changes due to density variation, scalar gradients based, grid-free, adaptive method to simulate reacting shear
change due to the chemical reaction, and volumetric expansion flow and applied this methodology to several configurations of
adds an expansion field. Solutions are obtained for a forced fundamental and practical significance. This method, the
shear layer at different Damkohler numbers and enthalpy of transport element method, has been developed by extending
reaction to study the effect of combustion heat release rate on the vortex element method so that compressible flow effects
the development of the large scale structures. Forcing is used and scalar transport can be included in the simulations. So far,
to ensure roll-up within the computational domain. We show the focus of the application of this method, and most other
that heat release enlarges the size of the fundamental eddies, numerical methods, has been the idealized, temporally
stretching their streamwise dimension and slightly reducing evolving layer in which one assumes that a reference frame
their cross stream dimension, while their overall size remains moving at the phase speed of the fundamental structures
almost the same. Along with forcing at the fundamental and follows the evolution of the layer [3-6]. This idealization,
subharmonic frequencies, heat release increases/decreases the however, leaves out several important effects, which the
size of the in-phase/out-of-phase eddies. The non-uniform spatially developing shear layer possesses, that have been
acceleration of the eddies in the streamwise direction causes detected experimentally and recognized in modeling analysis.
their relative locations to deviate from that of a uniform-density The purpose of this paper is to apply the transport element
layer and thus modifies the pairing process into a method to a spatially developing shear layer and to investigate
tearing/gulping process. Results also show that the enthalpy the effect of heat release on the fluid flow in this problem.
of reaction is more important than the reaction frequency factor
in affecting the flow dynamics. For the same parameters, the Spatially developing shear layer exhibits an asymmetric
variable-density layer grows slower than its uniform-density entrainment behavior which tends to drift the composition of
counterpart. the large scale structures towards the species convected by the

high-velocity stream [7,8]. If the two streams have different
densities, or different momenta, that also contributes to the
exact composition of the mixed fluid inside the large eddies in
ways similar to that of the velocity ratio although through a
different mechanism [9]. We found in previous simulations
that forcing can alter this composition in a way which depends
on the momentum ratio between the two streams. Most of
these findings were supported by linear stability analysis and

Copyright C 1992 by A.F. Ghoniem. Published by the several experimental studies. While is is possible to capture
American Institute of Aeronautics and Astronautics, Inc., with the effect of the density ratio on the change of the composition
permission. of the large structures in a temporal simulation, it is not

possible to study the effect of the velocity ratio, or the
I Graduate research assistant. combined effects of the velocity and density ratios, in such a

2 Currently, assistant professor, Johns Hopkins University, configuration. This is because a temporal simulation assumes
Baltimore, MD, member AIAA. perfect dynamic symmetry across the mean velocity contour

3 Associate professor, associate fellow of AIAA. and any subsequent changes in the layer structures are limited
4 Assistant professor, member A oAA. by this restriction. Our analysis of the spatially developing
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variable-density shear layer showed that the results of the
temporal analysis are either limited to a narrow range of Dp
parameters or are literally wrong if the effect of forcing is Dr- p 0 (1)
considered. We conclude that it is necessary to perform
spatially developing shear layer simulations if the physics of = -Vp
the reacting flow are to be properly modeled. P Dit (2)

The simulations of reacting, spatially developing Dsj - LV 2 S + w2 fv
mixing layers with uniform density, i.e., when the dynamic Dt - Pej "
effects of heat release were neglected, have been used before (3)

to discern the structure of the reaction zone and the effects of
the Damkohler number on the relative location of the reaction pT = 1 (4)
zone with respect to the large structures. It was concluded that
at small Damkohler number, the reaction is most intense near
the center of the large eddies, while as the Damkohler number where V = (Qxx, yy) is the gradient operator,D = V is
increases, the reaction zone moves outwards towards the outer xtay D a
edges of the eddies. The exact thickness of the reaction zone, the material derivative, p is the mixture density, t is time,
which resembles that of a strained diffusion flame, is a
function of the Damkohler and Reynolds numbers. It was also U = (u,v) is the velocity vector in an (x,y) right-handed
found that, under conditions of unity stoichiometry, a strong coordinate system and p is pressure. The model requires the
similarity exists between the products concentration field and transport of three scalars sj, j = 1,2,3 : the temperature, T, and
the vorticity field, suggesting a possible modeling approach the reactants' mass fractions, YI and Y2. The product mass
for this problem. In all these simulations, the flow was fraction is Yp = I - (Yi + Y2). The reaction rate is
restricted to uniform density. The results of the spatially
developing, nonreacting, variable density shear layer showed T wim
that even without volumetric expansion, density variation can Wv = ,4/p Y, Y2 exp(- ) where Af is the non-dimensional
influence the layer dynamics in a nontrivial way. Thus, it is frequency factor and Ta is the normalized activation energy.
important to introduce the dynamic effects of heat release into For temperature transport Pej = Pe, the Peclet number, and Qj
the spatially developing layer simulations. = Q 0 where Q is the enthalpy of reaction and 0 is the mass

Dynamic effects of heat release have been stoichiomerty. For the reactants Pej = Pe Le where Le is the
demonstrated before in a temporally developing shear layer. Lewis number. For Y1, Qj =-0 and for Y2, Qj=-I. Both the
There are two controversial issues regarding the effect of Lewis number and the stoichiometry are assumed equal to
combustion on the flow dynamics: (a) whether heat release unity.
reduces the growth rate of the layer via baroclinic vorticity
generation or via volumetric expansion; and (b) whether there The vorticity equation is obtained by taking the curl of
is actually a substantial reduction in the size of the eddies or it equation (2):
is just a delay in the instability development. Although it has
been established that heat release at the early stages can reduce - -
the growth rate of the layer, it was also found that forcing Do j= Vp x Vp
beyond the linear range can be used to overcome this effect. Li 2

This was demonstrated in the temporal layer only and will be p (5)
investigated in the spatial case in this paper. Deciding on the
separate role of baroclinic vorticity and volumetric expansion and the scalar gradient equation by taking the gradient of
requires simulations in which one mechanism is disabled while equation (3):
the other is active. This will be the subject of future work.
The second issue could not be resolved by the temporal
simulations only since the behavior of the spatially developing D6gj = - j.-V -jx (0j) + Vg + Qjdiv
layer differs from that of the temporal layer especially in the D - - d Vi (6)
pairing mode which dominate the activities in the downstream
section. av au

In this paper, we present simulations of a spatially where 0o = - is the vorticity, ij = Vsj the scalar
developing shear layer and use our results to answer some of x ay
these questions. We introduce the extension of the transport gradient and k is a unit vector normal to the plane of motion.
element method to a reacting compressible flow and its The density gradient is obtained from the temperature gradient
application to the spatially growing shear layer. We then using equation (4) and the pressure gradient from the velocity
present results of a nonreacting and reacting shear layer at field using equation (2). The velocity is decomposed into a
different rates of heat release. vorticity induced solenoidal component and two irrotational

components; one induced by volumetric expansion and the
other by the boundary conditions (C.; prescribed at the
boundaries, i denoting the unit vector normal to the

II. FORMULATION AND NUMERICAL SCHEME boundary), i.e.,

W =4 + + i (7)
We consider the motion of a two-dimensional,

compressible, chemically reacting flow at low-Mach number
and high Reynolds number. We assume that both reactants where u V x (y), g = V$, Wp= V4, and W, 0e,, 04
and products behave as perfect gases with equal molecular
weight and constant transport properties, that the reaction is satisfy:
single step and the kinetics are of the Arrhenius type. Under
these assumptions the governing equations in non-dimensional V2w = -0
form are: (8)

2



2 1 Dp DF•(t)
p Dr (9) Dr =0 (17)

V2 = 0 (10) and in the second step we add the contribution of the baroclinic
torque while approximating the material acceleration of the

respectively, particle by a two-step iteration forward difference scheme.

The numerical integration of the vorticity transport Note that the evolution of the vorticity field requires
equation starts by writing the vorticity as a summation over the knowledge of the density field which is coupled to the former
fields of a finite number of vortex elements of finite via the mechanisms of baroclinicity and volumetric expansion.
overlapping circular cores: The density field is obtained from the temperature field via a

discrete equivalent of equation (4). Similarly, the density
N gradient is obtained by taking the gradient of equation (4).

(xt) = •, Ft) f&(Ix-Xi(t)I) The expansion velocity ue can be obtained using equation (9)
S(11) in a similar fashion to the calculation of the vortical velocity

from the vorticity field, i.e.,

where Fi(t) = to(t) h2 (t) is the circulation of the ith element, N

Wi(t), Xi(t), and h2(t) denote its vorticity, location, and area, e = ( 1 Dp) (t) hi2(t) VG6(x-Xj(t))

respectively, and de otp it i (18)

f6(r) I --- exP(- rj2 )where
z 8 (12) VGo5-1) = • (l-exp(_ 2 r = 111

is the second-order Gaussian core function with core radius 8 2= 2  82' (19)

used to obtain a second-order discretization of the vorticity is the desingularized gradient of the kernel of the Poisson
field equation.

The vortical velocity, •, induced by the vorticity field The integration of the scalar gradients transport
in equation (11) is given in terms of the desingularized Biot- equation (6) is initiated by discretizing the gradient fields
Savart law: amongst a finite number of transport elements in a similar

fashion to the discretization of the vorticity field, i.e.,
N

= fi(t) K(Y-1 (t)) N -
i=, (13) -•(-,t) = • ijp(t) f•(x-x(t))

i= t (20)
where

Kbi) (Y'-x) (I - exp(_ rl3) where Cji(t) gii(t) hi2(t), is the weighted scalar gradient of the

2r•"2  82(14) ith element and gji the corresponding gradient.

is the desingularized kernel of the Biot-Savart integral and The scalar fields can be reconstructed from their
r=1. gradients via a convolution over the discretized field:

N-.
The evolution of the vorticity field is found by s-(-,t) = ji(t) VG,(-Xi(t)) + sj(-x,t)

updating the locations of the vortex elements, and their (21)
associated vorticity values according to equation (5). The
locations of the elements are determined by advecting the where
vortex elements with the local velocity vector along particle w sp'(x) is a component added to satisfy the boundary
trajectories. This is done by integrating: conditions.

dX1  ..- To simulate the evolution of the scalar gradient fields,
TU= ui (15) the transport elements are advected in a similar fashion to the

vortex elements and their gradients are updated according to
- . -equation (6) which is integrated in two fractional steps. In the

with initial condition XI(Xi,0) = Xi, i.e. Zi is the Lagrangian first step, the convection and reaction step, we consider:
coordinate of the particle originally located at X1 . Meanwhile el
the ev6lution of the vorticity associated with the elements is ._ - g j. x (o4) + Qj d j
established by considering the latter's circulation which Dr ds, (22)
evolves according to:

Rather then integrating numerically equation (22) an alternative

_. V 7P . approach is considered. The scalar gradients are related to the
Dt) _Vpi x D (16)Lagrangian deformation of elementary surface elements whose

t Pi t (16) normal coincides with the direction of the gradient. If a

Equation (16) is integrated in two fractional steps. In the irst denotes such an elementary surface, then the evolution of its
step, the convection step, we have: absolute value is governed by:
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d )velocity, the ambient temperature, and the channel height,
d__ respectively. The solution domain consists of the channel

di = (23) region lying downstream of the splitter plate and bounded at
Xmax, 0 < x < Xm,,, 0 < y < H. The top and bottom walls

where ; is a unit vector lying in the direction of the scalar are modelled as rigid, slip, impermeable planes, so that the

gradient. By considering the dot product of ; with equation as-
(22) and utilizing equation (23) it can be shown that: boundary conditions v = 0 and !ýy = 0 at y = 0 and y = H are

imposed, where sj is any of the three transported scalars T,
Ut '•_Qd•, gil Y1 , Y2. These conditions are satisfied by conformally

Dtla- •- d -1 mapping the entire channel region on the upper half of a
PIN, (24) complex plane, and using the appropriate image system of the

transport elements. At the downstream section, a condition of
Equation (3) also suggests that vanishing vorticity and scalar gradient is used as outflow

boundary condition, and is applied by removing the transport

___ = dQ, Lw elements which cross the x = X a, plane. At the inlet section,
Q j1 d ~ (25)the vorticity, velocity, top reactant mass-fraction-gradient and

Dt s(25) mass-fraction prof*les are specified as follows:

where 3sj is the variation of the scalar. Comparison of UXOyt) U2 - (Y-O .5H)2)

equations (24) and (25) implies that: fir=Or U2 (29)

_ _ 
U1 + U 2  U1 - U 2  y-0.5H

-7ý constant = C U(X=O,y,t) -- 2 2 - (30)

P1MI , j 
(26)

ay] ________y)l

Assuming negligible directional effects of diffusion on the -!(x=O,y,t) = 1 exp((Y0O5H-djy)2

scalar gradients the constant C depends only on initial ay i'(3o4) (3/4)2 (31)
conditions. Thus, knowledge of this constant, of the material
surfaces (which are readily available in this Langrangian Yx=O y:) _+y-O.5H-dy)

scheme and should yield both ; and 3/) and of bsj (via 2 (304) (32)
numerical integration of equation (25)) establishes the time
evolution of the scalar gradient due to convection and where erf denotes the error function. The bottom reactant's
reaction. mass-fraction-gradient and mass-fraction profiles are mirror

images of the top reactant's profiles. In equations (29-32), a

In the second fractional step we add the effect of denotes the standard deviation of the Gaussian profile which

diffusion: describes the initial vorticity profile. Thus the mass-fraction
profiles are thinner than the vorticity-velocity profiles and are
displaced about the centerline of the channel by a distance dy.

Dgj =, 9i (27) The inlet product profiles can be obtained from the reactant
profiles via YP =I-(Yj+Y 2). The temperature and product

This is done by expanding the cores of the elements according profiles are assumed to be similar thus the latter are used to
define the former.to:

2 2+ 4 T ay2= 8 Peo (28) --(x-Oy,t) = Tfl --- (x=0,yt)
ay ay (33)

where 8o is the core radius at time zero. T(x=O,y,t) = I + Tfl Yp(x=O,y,t) (34)

Previous application of the vortex and transport
element method to the spatially-developing, uniform density where Tfl is the adiabatic flame temperature. The thickness of
shear layer has been used to validate the scheme by comparing the vorticity layer, 2a, is scaled so that-the height of the
the numerical results for velocity and scalar concentration channel, H, equals twice the wavelength of the most unstable
statistics to experimental measurements. fundamental mode of the initial vorticity distribution of the

uniform-density layer. For the profiles considered here, 2a =
0.08 H.

MI. FLOW GEOMETRY AND BOUNDARY CONDITIONS Initially the layer is assumed to be flat and the above
inlet conditions are assumed valid throughout the domain. The
vorticity and scalar-gradient fields are discretized by

The reacting shear layer is formed by the merging, distributing transport elements over nine material surfaces
downstream of a semi-infinite splitter plate of vanishingly (lines) lying within the region of significant vorticity and
small thickness, of two streams of reactant fluids of unequal gradient variations. The layers are equally separated with a
velocity (x=0). The two fluids which are assumed perfect and separation distance dy = 0.0234, yielding a total thickness of
with the same molecular weight are at the same pressure and the discretization domain A = 0.1875H (i.e. A > 2oj). The
temperature, thus, same density. The top stream has velocity initial streamwise separation distance between neighboring
U1 and consists of reactant Y1, while the bottom stream has elements lying on the same material line, dx = dy, so that a
velocity U2 and consists of reactant Y2. Variables are square Lagrangian mesh is obtained (Fig. 1.). The vorticity

normalized with respect to U1, To, and H, the top-stream and scalar-gradient values associated with the transport
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elements are found by matching the discretized and assumed
profiles at their centers, i.e., by solving the linear system ratio We have performed several runs in which the velocity
obtained by equating the left-hand side of equation (11) to that matwas kept constant, r = 1/2. The Damkohler number was
of equation (29) (or that of equation (20) to (31) or (33)), was maintained high by using Q = 4-6. The non-dihensional

evaluated at Xi. The value of the core radius is found by activation energy was kept at Ta=1O in all runs. Calculations
iteration over those values which ensure strong initial overlap of the reacting layer were also performed for a uniform-density
so as to minimize the integral error between the assumed and flow, i.e., when heat release is not allowed to affect the flow
discretized profile. For the assumed vorticity profile and for dynamically, to isolate the effect of density variation. Keeping
the specified mesh. this procedure gives 6 = 0.0273. This the reaction frequency factor low limits the reaction zone
collocation scheme was found to yield more accurate results on structure to that of a distributed zone in which most of the
the initial growth of the instability waves. exothermic energy is deposited inside the large structures. We

have shown before that increasing the Damkohler number
The severe stretching of the Lagrangian mesh used to causes the reaction zone, which starts inside the cores of the

discretize the vorticity and scalar gradients, which increases large structures, to move towards the outer edges of the eddies
the distance between neighboring elements, may lead to the and to become a thin reaction zone of the flamelet type.
deterioration of the accuracy of the discretization. To Limiting the simulations to low Damkohler numbers, which is
overcome this problem, a scheme of local mesh refinement is not the general case, is representative of the early stages of
adopted whereby transport elements are continuously development of the reacting layer at an arbitrary Damkohler
introduced and deleted to ensure overlap of the elements. In number since the reaction starts always in the well-mixed
our computation, strong overlap is enforced near the inlet of zone, i.e., inside the cores of the structures. Thus, we believe
the domain by allowing a small maximum separation between that the conclusions of the study apply to a wider range of Da.
neighboring elements. This condition is relaxed as we
approach the exit of the domain by increasing this threshold Figure 3 shows a comparison between the reacting
value, thus allowing for efficient computations without shear layer without and with density variation, in both cases
compromising the accuracy of the numerical scheme. with temperature variation due to the chemical reaction. The

computations were performed with Af = 50 and Q = 6. The
shear layer is depicted using all the vortex elements and their
velocity vectors at three time steps. The velocity is plotted
with respect to the mean velocity across the shear layer to

IV. RESULTS highlight the boundaries of the large eddies better. We note
that density variation, if coupled to temperature variation via
the equation of state, leads to the generation of vorticity via the

The model described in Section III has been used to baroclinic effect and to an additional velocity field by the
study the effect of heat release on the dynamics of the spatially volumetric expansion. The effect of volumetric expansion is
growing shear layer and the influence of that on the rate of clear in the larger velocity vectors in the downstream sections
product formation. In previous studies of temporally growing of the shear layer. The cross sections of the eddies in the
shear layers and jets, it has been found, especially in an variable-density shear layer are larger than in the uniform-
nonpremixed shear layer, that heat release reduces the growth density layer. If the cross section of the eddy is modeled by
rate of the instability and slows down the roll-up in the linear an ellipse with a major axis in the streamwise direction and a
range. It has been postulated that the volumetric expansion in minor axis in the cross-stream direction, the figure shows that
the reaction zone, which, in the early stages, lies within the heat release causes the eddies to expand in the streamwise
vorticity layer, leads to the thickening of the vorticity layer and direction so that their major axis increases. On the other hand,
thus slows down the roll-up. It has also been established by the minor axis of the variable density eddies decreases slightly
our previous studies on a reacting jet that forcing at relatively giving the appearance that the roll-up of the fundamental
large amplitudes can be used to overcome this effect. If the eddies has been suppressed.
layer is forced into its nonlinear stages via large amplitude
oscillations, the effect of heat release on the growth rate of the The expansion of the eddies in the streamwi
large eddies is unnoticeable. Thus, in this work, we use large direction, and the overall acceleration of the structures as thce
amplitude forcing at the splitter plate to initiate the roll-up flow moves downstream, brings the large eddies closer than in
before any measurable heat release and thus avoid the the case of the uniform-density case. This has the effect of
suppression of the instability due to exothermic energy. The changing the phase relationship among the neighboring eddies
focus of the current study is, therefore, on the effect of heat from that imposed by the upstream forcing, i.e., the relative
release on the large-scale structure. locations of the large eddies are different than that in the

uniform-density layer. Since pairing dynamics depend
The forcing function, shown in Fig. 2, consists of a strongly on the phase relationship among neighboring eddies,

fundamental frequency and its subharmonic frequency. The this change of phase due to energy release, as expected, leads
former is chosen to correspond to the most unstable mode of to modifying the pairing dynamics. This is seen in Fig. 3 as
the uniform density, spatially developing shear layer. It the eddies in the uniform-density case pair and form structures
should be noted that it is not possible, within the framework of which protrude significantly in the cross-stream direction
the linear stability theory, to find the most unstable mode in the while in the variable-density case, the structures formed by
variable-density, reacting shear layer since the profiles change pairing seem to remain flat. The mechanisms by which the
with time as energy is deposited. The amplitude of both two eddies merge in the variable-density case seem to be a
modes is taken to be the same and is 0.015. Note that, as will merging or "gulping" more than pairing. It also appears that
be seen, forcing at such high amplitude affects the layer small eddies are torn between their larger neighbors. The
structure in a fundamental way. We observe that due to the reduction of the cross-stream growth of the layers can be
presence of two frequencies, one being the subharmonic of the attributed in part to the larger phase velocity of the eddies due
other, two eddies form and then pair. The eddy which forms to the volumetric expansion.
during the part of the cycle in which the fundamental and the
subharmonic components are in-phase is bigger than that
which forms in the second part of the subcycle during which Figure 3 shows that although heat release contributes
the two components are out-of-phase. The difference between to the growth of the structures, it does so primarily in the
the size of the two eddies increases as the amplitude of forcing streamwise direction and thus the growth of the layer, as
increases. As we will show, this has an important effect of the measured by the cross stream divergence of the boundaries of
pairing dynamics of the reacting shear layer. the vorticity layer, seem to be reduced by heat release. This is
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confirmed in Fig. 4 where we compare the results of three would have led to pairing. However, investigating this
cases for which Af = 50 and 100 at Q = 4, and Af = 50 at Q = possibility is left for future work.
6 In these figures we distinguish between the effect of the rate
and the amount of energy deposition due to combustion. In The detailed structure of the reacting layer is shown in
the first and last cases, we observe the peculiar behavior that Fig. 6 for the uniform-density case and Figs. 7 and 8 for the
the difference between the sizes of the two eddies which form variable-density cases. In these figures, the results within two
during one cycle of subharmonic forcing becomes larger. sections of the computational domain are shown in terms of
Note that during each cycle of subharmonic forcing, two the product mass-fraction, the reaction rate, and the vorticity.
subcycles of fundamentals exist: one in-phase and one out-of- For comparison, Fig. 6 shows the product mass-fraction,
phase with the subharmonic. Even in the uniform-density reaction rate and vorticity for the uniform-density case with A,
layer, the eddy forming during the in-phase subcycle is larger = 50 and Q = 6. In these computations, the temperature was
than the eddy which forms during the out-of-phase subcycle. allowed to vary while the density was maintained constant.
With heat release, the "in-phase" eddies become larger and the The left-hand side of the figure shows the results at the early
"out-of-phase" eddy becomes smaller. This imbalance is stages, where the fundamental mode dominates the dynamics,
clearly seen in Fig. 4 where in the downstream part of the and the right-hand side shows the results in the downstream
domain, the small, out-of-phase eddies seem to get gulped by part where pairing is the dominant mechanism in the
the large, in-phase eddies. dynamics. The results in this figure will be discussed in

connection with the results of the variable-density cases.
The reason why heat release contributes to the faster

growth of the in-phase eddy and the slower growth of the out- In Fig. 7, we focus on the fundamental mode and
of-phase eddy is not clear at this point and requires further show the above variables in the section 1.43 < x < 2.43 at
investigation. What is clear is that as the rate of energy time t = 20 for Af = 50 and Q = 4 and 6. In Fig. 8, we
release, as determined by Af, or the amount of energy concentrate on the subharmonic mode and show the same
released, as defined by Q, increase, the difference between the variables in the section 2.82 < x < 3.82 at time t = 15.5 for A1
size of the two eddies becomes more pronounced. In both = 50, 100 and Q = 4. In general we find that increasing the
cases, near the downstream end of the domain, the small amount of heat release by using larger values of Q has a
eddies disappear faster as they are either torn between the two stronger effect on the dynamics of the layer than increasing the
larger neighboring eddies or gulped by either of them. On the rate of energy release which is achieved by using larger Af.
other hand, as more heat is deposited inside the large eddies, This is exhibited by the extra flattening of the eddies, and their
they expand both in the streamwise and cross stream further expansion in the streamwise direction, as the heat
directions. This expansion is exhibited by the faster growth of release increases by increasing Q in Fig. 7 than by using
the layer with higher heat release than with the lower heat higher values of Af in Fig. 8. In both figures, increasing the
release, rate of heat release leads to: (a) flattening the eddies although

the total cross section remains the same or increases; (b)
The effect of heat release on the physical size of the decreasing the size of the out-of-phase eddy with respect to

layer is depicted in Fig. 5 where we show (a) the product that of the in-phase eddy; (c) maintaining higher rates of heat
thickness, defined as ly(Yp" = 0.01) -y( Yp+= 0.01)1, and (b) release in the braids due to the weaker roll-up; and, (4)

modifying the vorticity distribution inside the eddies
the reaction thickness, defined as ly(w = 0.01 Wvmax) -y(ii÷ + extensively. Both the product mass-fraction and the reaction
0.01 wvm.)l, both averaged over 100 time steps, where rate remain high within the braids as the rate of energy
superscripts + and - indicate increasing and decreasing values deposition increases indicating that the strain there is reduced,
of the variables, respectively. These plots, especially the thus the flame is not extinguished to the same degree as in the
uniform-density and low-heat-release cases, exhibit the trend uniform-density case. In the second section, the fate of the

out-of-phase eddies, as they are strained and gulped by the
previously found in forced shear layers: the thickness first larger, in-phase eddies is also shown. The relative location of
increases due to the formation of the fundamental eddy, stays the eddies is much different than it was in the uniform density
flat where the structures are essentially convected without case.
interaction, then increases again during pairing. However, as
the rate of heat release increases, the size of the structures The similarity between the product mass-fraction and
continues to increase beyond the first stage due to the the vorticity is observed in these results albeit to a lesser
volumetric expansion resulting from the heat release inside the degree than what we observed in the uniform-density case.
structures. Moreover, the sudden transition where pairing This is because vorticity generation due to the baroclinic
starts in the uniform-density case disappears. Instead, the torque, produced as a thin zone of low-density fluid forms
thickness seems to keep its gradual rise into the third stage. within the reaction zone, substantially distorts the original
This corroborates our previous observation that pairing in the
uniform density case is replaced by a gradual process of vorticity within the layer. The area where the vorticity is most
tearing/gulping that leads to the development of the large disturbed by the combustion process is where the reaction

zone is. There, the vorticity is intensified around the reaction
eddies. zone on one side of the eddy and changes sign across the

Plots of the layer thickness show that as the rate of heat reaction zone on the other side of the eddy. This indicates that

release increases, the size of the layer grows. Since the baroclinic vorticity plays a significant role in the developing

growth of the layer is, to a large extent, due to volumetric structures of the shear layer. The complex structure of the

expansion, one can infer that as the layer thickness grows vorticity field resembles qualitatively that observed in the case

faster, the amount of product formed also increases. It is of a nonreacting, variable-density shear layer. It is difficult at

interesting to note that while small rates of heat release can this stage to distinguish between the role played by the

reduce the size of the structures and delay the overall growth baroclinic vorticity and volumetric expansion since they are
of the layer with respect to the uniform density layer, as the strongly connected with the reaction.
rate of heat release increases both the overall size of the layer
and the rate of product formation become higher. It should be The plots of the reaction rate show that the reaction

emphasized that this is only true when high amplitude forcing zone becomes almost a ring around the large eddies, While it
is applied. When we did not force the layer, we found that is clear that at the early stages the reaction starts inside the
increasing the heat release rate suppressed the instability eddies where the mixed fluid exists, the reaction zone moves
leading to the roll-up, and the rate of product formation was outwards in the large eddies as the original mixed reactants are
reduced. It is probable that stronger subharmouic forcing burned and are replaced by two newly entrained streams. The

same reaction-zone structure is observed in the downstream
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Figure 3. The location and velocity vectors of the vortex elements of the uniform-density (left) and
variable-density (right) reacting shear layers, both with Ap- 50 and Q = 6.
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Figure 4. Comparison between three cases of variable density reacting shear layers at different
frequency factor and heat release.



0 7 0.7

0 06 u)0.6
Ln V

S05 3 0.5
CL)

-04 2 0.2

0 0 0.0

0 2 3 4 5 0 I2345

23TPEArIL'1[E DISTANCE '3TFE~rMuE 'E DISTANCE

Figure 5. The growth of the reacting shear layer shown in terms of the product thickness (left) and
the reaction thickness (right).

Figure 6. From top, the product mass-fraction, reaction rate and vorticity for the reacting shear
layer at Af = 50 and Q = 6 for the uniform density case, shown for 1.43 < x < 2.43 (left) and 2.45
<x < 3.43 (right). In all cases 02 .5
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( .. Figure 7. From top, the product mass-fraction, reaction rate and vorticity for the reacting shear
layer at A- = 50 and Q = 4 (left) and Q -6 (right). The results are shown for 1.43 < x < 2.43. In
all cases 0.25 < y < 0.75.

... . . ...........

....:..'::' '. , ::'::':: : ::::-..""": ;::'•:''' ::: ; .... :: '' : % :i

. . . .. ... . .:. .:':
.A i M

Figure 8. from top, the product mass-fraction and reaction rate for Q =4 and A/= 50 (left) and Aj
= 100 (right). The results are shown for 2.82 < x < 3.82. In all cases 0.25 < y < 0.75.
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